February 2021

Research Review No. 95

Analysis of top and subsoil data from the

High Speed 2 (HS2) rail project

Work package 2

Learnington Spa to Crewe and Nottingham (Section B):

Soils on Red (Triassic) formations and overlying Drift

Stephen Heming¹

¹Reading Agricultural Consultants, Gate House, Beechwood Court, Long Toll,

Woodcote, Reading RG8 0RR

This review was produced a six month project (21140072) that started in July 2020. The work was funded by a contract for £2,700 from AHDB.

While the Agriculture and Horticulture Development Board (AHDB) seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.

Contents

1.	Exe	ecutive Summary	4
2.	Laı	nd Use and Soils	14
3.	Sa	mpling method and expression of nutrient levels	16
4.	Ph	osphorus	19
	4.1	Overview of phosphorus levels	19
	4.2	Factors influencing phosphorus levels in topsoil	21
	4.3	Factors influencing phosphorus levels in subsoil	23
	4.4	Prediction of phosphorus in subsoil	28
	4.5	Agronomic Summary: phosphorus levels on red soils of the Midlands	30
5.	Po	tassium	33
	5.1	Overview of potassium levels	33
	5.2	Factors influencing potassium levels in topsoil	34
	5.3	Factors influencing potassium levels in subsoil	37
	5.4	Prediction of subsoil potassium	43
	5.5	Agronomic conclusion: potassium levels in red soils of the Midlands	44
6.	Ma	ignesium	48
	6.1	Overview of magnesium levels	48
	6.2	Influence of texture on magnesium levels in topsoil	49
	6.3	Influence of texture on magnesium levels in subsoil	51
	6.4	Relationship of magnesium to parent material	54
	6.5	Problems of high magnesium in red soils of the Midlands	55
7.	pН		57
	7.1	Overview of pH levels	57
	7.2	Factors influencing topsoil pH	58
	7.3	Factors influencing subsoil pH	58
	7.4	Prediction of subsoil pH	62
	7.5	Alkalinity in parent material?	64
	7.6	Agronomic conclusion: pH levels in red soils of the Midlands	64
8.	Org	ganic Matter	66
	8.1	Overview of soil organic matter levels	66
	8.2	Factors influencing organic matter the topsoil	67
	8.3	Factors influencing organic matter levels in subsoil	68
	8.4	Agronomic conclusion: organic matter levels in red soils of the Midlands	72
	8.5	Carbon stocks	74
9.	Тс	tal Nitrogen	75

10. Evaluation of Accuracy of Geological and Soil Survey maps	
11. Regression and correlation	81
11.1 Influence of topsoil parameters on subsoil P	81
11.2 Influence of Subsoil parameters on subsoil P	83
11.3 Effect of sampling method on topsoil P: subsoil P relationship	85
11.4 Effect of Subsoil Organic Matter on topsoil: subsoil P relationship	
11.5 Multiple correlation: factors affecting topsoil or Subsoil K	
11.6 Arable: Subsoil Organic Matter and stone category on topsoil: subsoil K	
11.7 Grassland: effect of Subsoil OM and stone category on topsoil: subsoil K	102
11.8 Effect of sampling method and organic matter on topsoil pH	113
11.9 Effect of topsoil pH and texture on subsoil pH	115
11.10 Effect of Sampling method, Stones and Texture on OM	121
11.11 Relationship of Total Nitrogen and Organic Matter	128

1. Executive Summary

This data set comprises 796 sampling points in wide transepts from Learnington to Lichfield and thence to Nottingham or to Crewe. Half were in clusters of 2-15 points in close proximity (about 5 per ha) and the rest at a spacing of about 1 per 3 ha.

For estimation of regional averages a "balanced data" set was used which excluded 2 in 3 of the cluster data and totalled 584.

For examination of inter-relationships between topsoil and subsoil parameters the whole data was used. Measurements were made at NRM laboratory of pH, Olsen P, available K, Mg and OM (Dumas method) plus total nitrogen (Kjeldhal method) on cluster points only.

35% of the coverage was arable, 3% maize, 36% better quality grass leys, 20% other grassland and 6% woodland.

Soil Profiles

The solid geology (on BGS maps) was red (mainly Triassic) Mudstones (75%), Siltstones (9%) or Sandstones (16%). However 67% of the mudstone areas and 25% of the sandstone had superficial Drift: in 11% of cases this was Alluvium, 26% Sand & Gravel and 19% Glacial Till.

3% of topsoils hand-textured as sandy (loamy sand), 38% as light loam (sandy loam or sandy silt loam), 43% as medium - sandy clay loam, clay loam or silty clay loam with up to 26% clay - 14% as heavier loams (27-35% clay) and 3% were clay-textured.

Subsoil textures were more extreme with 13% sandy and 19% clay; in Glacial Till subsoils there could be short-range (with a few metres) variation in subsoil texture.

Over Mudstones the topsoil often contained less clay (and more sand) than the subsoil - evidence of thin Drift even where none was marked on BGS map.

Soil survey (SSEW) Association national maps were guides of soil profiles likely but each mapping unit contains a range of permitted textures. Moreover in 26% of profiles, the texture of topsoil was judged *outside* these generic descriptions (and 42% of upper subsoil texture).

Neither SSEW nor BGS maps can be relied on to predict the soil texture (nor main soil type) and sometimes there was a significant soil change within the same field, pointing to the importance of soil survey to demark management zones.

5% of topsoil colours were 2.5YR (strong red), 19% 5YR (reddish brown), 53% 7.5YR (strong brown) and 23% normal brown (10YR or lesser hue). Subsoils tended to be redder, 9%, 32, 33 and 16% respectively.

Median depth of identifiable topsoil was 30cm for arable, 28cm for leys and 25cm for extensive/permanent grassland and 25cm for woodland. Some arable topsoils were significantly deeper.

Composite samples were taken by corer 0-20/22cm and 25/30 to 50cm or by representative samples taken from Dutch auger. The former method tended to a lesser average topsoil depth in the sampling.

'Subsoil' in this summary henceforth refers to upper subsoil to 50cm depth.

Note: agricultural soils are routinely sampled to 15cm (arable) and 7.5cm (permanent grass) which might generate indicate higher nutrient values than found in these surveys (minimum depth of 20cm).

Phosphorus

In this summary RB209 phosphorous indices 0, 2 and 3 are shown in parentheses and divided into lower and upper halves (+/-)

Median Olsen P in topsoil was arable 23 mg/l (2+) > leys, amenity grass, woodland 17-18 mg/l (2-) >> extensive grassland 8 mg/l (0+).

24% of arable soils were below target index (2) and 14% index 4. 47% of leys and most extensive grassland were below target index. The latest 2019 (PAAG) laboratory survey gives a similar proportion of deficient arable samples (22%) but less grassland (34%) than here though based on a shallower sampling depth.

Texture was relevant: topsoil P tended to be higher on lighter land under arable or extensive grassland but on leys was even across all textures. Under woodland P was higher on sandy and peaty soils. There was no correlation of topsoil P and pH.

In subsoil medians were arable 12 mg/l (1) > amenity grass, woodland 10 mg/l (1) > leys 8 mg/l (0+) > extensive grassland 5 mg/l (0-).

38, 47, 48, 60 and 77% respectively were index 0. 10% of ley and 15% of extensive grass subsoils were below laboratory detection limit of 2.5 mg P/I.

38, 20, 30, 23 and 14 % respectively of subsoils were index 2 or above.

Subsoil P is very strongly related to topsoil phosphorous (P = 0.8) with lesser relationship with subsoil potassium (P = 0.5), subsoil texture, subsoil organic matter (OM) and sampling method – samples taken by corer average ~2 mg/l more P in the subsoil than auger method.

There was no correlation of subsoil P with subsoil pH.

The reddest soils (2.5YR hue) tended to the lowest P levels and the slightly reddened soils (7.5YR) highest, but not statistically significant.

55% of variation in subsoil P could be accounted for by topsoil P adjusted for subsoil texture and a further 10% if subsoil OM is known. Under light to medium topsoil there is a "change point" as topsoil increases above 35 mg P/I when subsoil P rises more sharply. On heavier land the rise may occur above 40 mg/l but is difficult to predict.

At topsoil 20 mg P/I the subsoil (to 50cm) is typically 12 (1) for sandy, light and medium loamy soils and 9 mg/I (0) for clay subsoils. Results vary +/- 1 mg/I depending on whether corer or auger method was used.

Each increase of 1% OM in the subsoil up to 6% correlates with an increase in subsoil P of 1.1 mg P/I on soils up to 35 mg P/I, with bigger effect on high P heavier soils.

Natural woodland and amenity soils have higher subsoil P than extensive grassland or leys, implying agriculture utilisation is leading to decline in subsoil P rather than enrichment.

Overall the higher P in *arable* than grass subsoils is linked to predominance of lighter textures. Once topsoil exceeds 35 mg/l (mid 3), subsoil will be index 2. At topsoil >45 mg P/l (4) the subsoil is likely to be index 3 on all except the heavier subsoils. Therefore it seems agronomically safe practice to curtail phosphorus inputs and utilise excess in all soils which are >35 mg P/l (mid index 3).

Assuming such soils are not subject to run-off, the environmental case is less clear in lighter undrained soils a) because downwards movement of P is not a problem, b) heavier subsoils can have underdrains but P is absorbed more strongly and subsoil rarely exceeds index 1 (and probably is less below 40cm).

Provided arable and grass soils are kept at or above mid index 2 (20 mg P/I) this should guarantee subsoil is above index 0.

Subsoil P cannot be predicted satisfactorily from topsoil P on the following: disturbed/ remade land, (layered) alluvial deposits or at very high P index over heavier subsoils. In such cases subsoil should be sampled at same time as topsoil.

Potassium in topsoil

For this report indices 0,1, 2 and 3 are divided into lower and upper halves (+/-)

A large range of potassium levels were found. Arable median topsoil K was 131 mg/l (2-), significantly higher than grass leys or extensive grass, median 87 mg K/l (mid 1). 42% of arable and 85% of grass samples were below target index, significantly more than reported in PAAG (2019), 24% and 41% respectively (though sampled somewhat shallower in both cases).

Only 27% of arable soils were above target index of which most (17%) were index 2+.

Texture of topsoil is important: under arable or grassland K tended to increase with clay content light loams < medium loams < heavier loams < clays Typically a clay topsoil was 40 mg K/l higher than a medium topsoil (SCL/mCL)

Topsoil K strongly related to phosphorus (a management influence) and weakly with pH (1 unit rise corresponding to $\Delta 25$ mg K/I). Organic matter had weak influence and there was no effect of Average Annual Rainfall.

Potassium in subsoil

There was clear relationship of Subsoil K to Topsoil K which altered with texture. At topsoil mid index 2 subsoil K was proportionally less on sandy subsoils (due to leaching) and on heavier loams/clays (stronger adsorption).

On arable sites subsoil K was influenced by subsoil organic matter – each 1% increase in OM associated with $\Delta 4$ mg K/l in clay subsoils rising to $\Delta 9$ mg/l on light loam subsoils.

For any given topsoil K, under grass the subsoil K averaged 10 mg K/l less than arable sites and was usually unrelated to OM. Under grass there may be less deep disturbance or mixing of topsoil material than on arable land.

On sandy to medium subsoils, an increase in subsoil stones by about 10% (v/v) was associated with $\Delta 8$ mg/l increase in subsoil K, i.e. the stones may concentrate K leached from topsoil.

75% of the variation in K level in the upper subsoil could be accounted for by topsoil K adjusted for subsoil texture. Alluvial soils were unpredictable, and on some stony lighter subsoils subsoil K can be parity or higher than topsoil.

Farmers usually know their topsoil texture but not the upper subsoil: in 33% of the instances it was heavier than the topsoil and in 18% the subsoil was lighter (sandier).

The prediction of subsoil K from topsoil K alone is problematic, but some guidance is given below assuming that potash deficiency is very likely below 90 mg K/l.

- At (topsoil) K index 0 (0-60 mg/l) subsoil is also index 0 but rare on heavier soils.
- At K index 1- (61-90 mg/l) subsoil is likely 0 or 1- and thus inadequate.
- At topsoil index 1+ (90-120 mg/l) arable subsoils are likely index 1- on sandy/light loam soils but 1+ on medium and heavy soils, implying some adequacy but see note below*. Under grassland subsoil K is very unpredictable (0 to 2-).
- At topsoil index 2- (121-180 mg/l, target) subsoil is likely index 1+ on sandy to medium soils (but ranging 1- to 2-, in the former case this might cause deficiency if the topsoil dries out). Heavier subsoils are usually 1+ to 2- implying sufficiency* though index 1- was found in a fifth of cases.

•	The probability of sub	soil K being 90 mg/l or le	ess is
	Topsoil index 1+	65% of lighter topsoils,	44% medium to heavy.
	Topsoil index 2-	38% of lighter topsoils,	21% medium to heavy
	Topsoil index 2+	20% of all textures	
	Topsoil index 3	0%	

 On heavier soils, potash levels in these Triassic clays seem better * than Carboniferous clays where the subsoils were usually index 0/1 (see NE report). Subsoils formed in Triassic mudstone tended to higher subsoil K than in heavier subsoils on Drift but were 'obviously K releasing' (see southern report).

* A better K level in *heavier* subsoil may not be as effective as it seems because K depletion experiments show that a basal amount of the analysed K is not actually plant extractable and this 'dead K' increases with clay content. In this data intercepts (at theoretical 0 mg/l topsoil K) were light loams subsoils (0) < medium (20 mg/l) < clay (45 mg/l). It is possible that the first 50 mg K/l in heavier soils is not useable by the plant. More research is needed on this.

• Maintaining soils above target at index 2+ is likely to maintain subsoil at index 1+ to 2- (arable) or 1+ (grassland) so subsoil K should be adequate in dry seasons.

- Topsoil K index 3 corresponds to subsoil K of at least 2- and so should be quite safe to run-down despite uncertainties.
- At levels above (and at) target index it is implicit that some K is being leached from topsoil on medium soils and a substantial amount on lighter soils.
- Measurement of subsoil K should be routinely made in potash depletion (or build) experiments. It is also advisable on disturbed soils or soils on layered alluvium or stony subsoils or where there is large textural contrast e.g. medium loam over clay or heavy loam topsoil over light loam, land ploughed up from long term grassland.

Magnesium in topsoil

Mg index 2 (51-100 mg/l) is considered optimal for nearly all crops and grassland.

Only 6% of arable oils were below target, most were index 2 or 3 (median of 112 mg/l). A few (13%) were Index 5 (very high) or Index 6 (excessive)

Under grass leys Mg levels were slightly higher (median 122 mg/ l); 5% were below target and 11% index 5 to 7. Under extensive grassland values were much higher - median index 4 (219 mg/l) and 40% Index 5 to 7. Amenity grass tended to be lower. On woodland median Mg was 123 mg/l but values are widely spread with 22% index 0/1 and 33% index 5 to 8.

The PAAG (2019) survey found 12% were index 5 or more (arable and grass), which accords with the data here except on the permanent grassland.

For all land uses Mg level tended to increase with clay content :

sandy and light loams << medium topsoils (50 mg/l higher) << heavier loams (50 mg/l) << clay topsoils (usually >350 mg/l (6 or 7)).

Arable sites deficient in Mg (index 1 or 0) were mostly on lighter soils and a few on medium textures; likewise for leys. On amenity grass low Mg cases were restricted to light loams.

On extensive grass Mg was hardly ever deficient and greater across all textures, the median increasing from index 3 for lighter loams to index 5 for heavier loams. Probably higher Mg is due to lack of offtake (no cuts), predominance of grazing (Mg returned in excreta) and possibly wetness (lack of leaching).

Under woodland the differences due to texture are extreme.

Magnesium in subsoil

Under on arable land subsoil Mg averaged similar Mg to topsoil but with more extreme values - 14% index 0/1 and 19% Index 5 to 7. On grass leys there was more variation (14% low and 19% index 5 to 7) and under woodland subsoil Mg ranged from index 0-7.

Modelling of the data gives a texture matrix for predicting subsoil Mg. It is likely to be lower in the subsoil (0.8 to 0.9x topsoil Mg) if either topsoil or subsoil was sandy or light loam

texture. In other cases the ratio was parity or 1.2-1.4x higher where subsoil was heavier texture than the topsoil.

Problems of low or very high magnesium

a) where the topsoil is adequate index (lower end 2) a sandy or light subsoil could be index 1 (or a topsoil index 1 may overlie index 0). This may have consequence in dry seasons. In all other textures Mg in subsoil will be equal to or higher than the topsoil.

b) RB209 states that high soil Mg may antagonise uptake of potassium. The criteria are not precisely specified but a minimum ratio of 0.5 K:Mg on a mg/l:mg/l basis is sometimes cited. High Mg might also make soil structure more unstable.

In the arable data median K:Mg ratio in topsoil was 1.3. In *16% of cases ratio was 0.5 or less.* For grass leys median K:Mg was 0.8, and *24% of cases had ratio <0.5* of which 5% were <0.25 (i.e. mg/l Mg was more than 4x the mg/l K !)

In subsoils potassium tends to be lower than topsoil while Mg can be higher, especially where heavy textured. Arable subsoil median K:Mg ratio was 0.8 and 29% of ratio less than 0.5 of (9% were < 0.25). Under leys median was 0.7 with 32% <0.5 (9% <0.25).

Very high Mg parent materials are Alluvium over Mudstone and soils directly formed on Branscombe Mudstone or Dolomitic Siltstone (index 6-7); soils formed on Gunthorpe, Sidmouth and Wilkersley Mudstones are typically index 5. Soils in Glacial Till or fluvioglacial material over the above mudstones are slightly lower (index 4) - as expected due to dilution with foreign material. On sandstone, mixed mudstone-sandstone formations or alluvium over sandstone the subsoil is index 3 or 2.

There was no correlation between Mg and soil pH suggesting that clay mineralogy dominates rather than whether dolomite is present or not.

Magnesium: potassium antagonism could be problematic on a significant proportion of Triassic soils (though less than found in the NE region). K:Mg ratio is kept above 0.5 provided target K index (2-) is attained and Mg index does not exceed 4. At Mg index 5 topsoil K index of 2+ kept the ratio above 0.5. More agronomic trials are needed on such soils to establish what the critical ratio is for preventing potassium deficiency in crops.

pH of topsoil

34% of the arable land was at target pH (6.5-6.9), 28% at marginal pH (6-6.4) and only 12% acid (< pH 6) with almost no samples <pH 5.5. More soils were acid (19%) in the PAAG (2019) survey.

For grassland 21% of better quality leys, 38% of the extensive grassland and 50% of amenity grass was below optimum (pH 6.0+). However, of the extensive grassland only 4% was below pH 5.5 (compared to 19% in PAAG survey). 60% of woodland was < pH 6.0 or which 20% was below pH 5.

The data suggests that in this region most arable and intensive grassland farmers are regulating pH by testing and liming (though control could be improved to eliminate low pHs).

Note: normally grass is sampled at shallower depth (7.5cm or 15cm) than the 20cm+ here, and so pH may be lower in main active layer of grassland, especially on fields which are not (rotationally) ploughed..

Topsoil pH decreased in sequence arable > ley > extensive > amenity but not by a large amount (medians are 6.6, 6.4, 6.1 and 5.9 respectively).

pH is slightly influenced by topsoil texture with a median increase of 0.2 units from sandy to clay soils. pH *decreased* with topsoil OM% though it explains a poor amount of the variance.

pH of subsoil

Subsoil pH is strongly related to topsoil pH with a lesser influence of topsoil and subsoil texture. At topsoil pH 6.0 subsoil is most likely to be 6.2 on a sandy soil increasing to 6.5 on a clay; at topsoil pH 5.5 subsoil is likely to be 5.9 and 6.1 respectively. However there is considerable uncertainty (r^2 <0.6) and in some cases subsoil was more acid than the topsoil.

The general rule holds that 'if target topsoil pH is maintained the subsoil will take care of itself.' However, subsoil below 6 constitutes a risk for arable crops, and in the following instances pH of the subsoil (to 50cm) is worth testing as well:

- a) Topsoil pH < 6.4. Light loamy or sandy soils or stony subsoils or organic soils; fields which have come out of longer term grass or been under minimal cultivation.
- b) Topsoil pH < 6.0. Light loamy, sandy or stony subsoils, organic soils and all soils where cropping is sensitive to acidity e.g. barley, beans, sugar beet.
- c) Topsoil pH < 5.5 all cases including intensive grassland.

Where subsoil pH is found to be below 6.0, the appropriate lime requirement can be added by over-liming the topsoil (to above 7) to accelerate leaching of bicarbonate, or "ploughing under" the extra lime or applying more lime the following autumn.

Alkaline subsoils

As topsoil pH approaches 7.0, subsoil pH tended to parity for lighter soils and was up to 0.5 higher on clays, though the latter may depend on mineralogy. About 5% of topsoils were pH 7.5 + and 6.5% of subsoils. Alkaline subsoils could be found on all Triassic Mudstones and Siltstones, on Glacial Till and (rarely) sandstones, and cannot be predicted reliably from soil or geology maps except where deposits are mapped as 'dolomitic'. Worcester association is most likely to contain calcareous layers in the (upper) subsoil. Some cases may be due to over-liming by farmer.

Organic matter assessment

The categories are as specified in Soil Survey of England and Wales handbooks except high is here designated "Good" and Very High as "High". > 10% OM is termed 'organic'.

Sampling method had no influence of OM measurement of topsoil on arable land but was 0.4-0.7% higher on grassland, reflecting inclusion of the surface layer by corer which was not always the case with samples taken off the auger. Subsoil OM was proportionately higher by corer (by an average 0.4% and 0.26% on arable and grassland) which is due to

subsoil sample starting at somewhat shallower depth than auger - in the latter purer subsoil cores were selected from auger, in some cases below 35cm.

Median OM values are lower than means and a better indicator for agronomic purposes. Notwithstanding all these uncertainties, the data for region shows the following.

Organic matter in topsoil

Median was 3.2% in arable soils (moderate), very few samples below 1.5% and only 16% of samples 4.5% or higher.

Grass ley topsoils had slightly greater OM, median 3.8% OM with 31% of samples >4.5% but very few >10%. Under amenity and extensive grassland OM was higher, medians 4.3 and 4.7% OM, though including more wet sites than other land use categories and 5% were >10% OM.

Median identifiable depth of topsoil under grassland was 25cm and samples were taken to at least 20cm depth, compared to 7.5cm or 15cm RB209 recommends for permanent and temporary grass.

Under woodland OM (typically sampled to 25cm depth) was highly variable; median 5.2%.

Topsoil texture had an influence on OM levels in arable data, the median increasing from 3.2% for sandy topsoils to 4.0% on clays, but no obvious texture effect under grassland. Under woodland, organic topsoil (>10%) was common in sand and light loam textures but rare in medium or heavy soils.

Organic matter in subsoil

Was strongly related to topsoil OM%, unrelated to topsoil texture but influenced by subsoil texture - with OM levels proportionately lower on sand subsoils and higher on light loam subsoils than all other texture groups (on both arable and grassland). This could be due to a) poorer OM retention on sands b) more ready carry-down of organic matter (by earthworms) on light loams than medium or clay subsoils.

Stones might concentrate OM input from earthworms (or deeper roots) and on arable land the lighter soils each stone category (estimated 10% by volume) corresponded to an average increase of 0.18% subsoil OM. However on grassland subsoils there was a *decrease* of 0.35% OM.

Under woodland the subsoil OM% was proportionately higher in sands and light loams, and lower in medium and clay soils.

Topsoil OM% explains less than half the variation in subsoil OM% ($r^2 = 0.35-0.40$) in arable and grass, more under woodland. Compared to topsoil OM, subsoil OM is proportionately less in grass and woodland than arable.

Though there is considerable unexplained variation, as a generalisation, on arable soils at moderate organic matter (3-4.4%) the subsoil is likely to be low (1.5-2.9%). If the topsoil is low, the subsoil is low or very low.

For grass leys at moderate topsoil OM, the subsoil is likely to be low or very low OM. If topsoil is low OM subsoil will be very low. When topsoil OM is good (4.5-6.0%) subsoil is most likely to be low (<3.0%) and at high topsoil OM (> 6%) the subsoil OM is unpredictable, ranging from low to high.

For arable and leys a realistic target to aim for in the upper subsoil 25-50cm is 2.5% (Dumas method). This will improve potash retention, phosphate availability and soil structure.

Carbon stocks

Stocks in soil cannot be simply derived from OM% measurements because it also depends on horizon depths, stones and bulk density. Density is higher on sandy or compact soils.

A calculation has been developed to estimate total carbon to 50cm depth which needs review but estimates average carbon in this data set to 0-50cm depth as **95 t C/ha** on arable land, **137 t C/ha** under extensive (permanent) grassland and **160** t C/ha under woodland .

However the calculation needs peer review and verification before it can be published or used to investigate whether soil texture significantly influences affects carbon stocks.

For further studies agronomic or environmental, soil is best measured to standardised sampling depths and using a corer rather than taken off augers, with standardized depths 0-25 and 25-50cm or 0-20, 20-40 and 40-50cm.

Total Nitrogen

Total N is of environmental and agronomic relevance, influencing the release of available nitrogen to crops (and grass) by mineralisation; TN > 0.23% being a threshold of importance in RB209.

About half the data set had been measured for total N, although in clusters so their representativeness to the whole region could be statistically challenged.

Hardly any arable topsoils were > 0.35% TN but 32% were >0.22%. Median TN was 0.19%, very close to the 0.2% cited as typical in the literature.

Under grass leys, 10% of topsoils were >0.35% and 38% 0.23-0.34% TN; median was 0..22%. Under extensive (permanent) grassland and woodland, median TN was 0.26% and 0.28% respectively, though extremely variable under woodland.

In arable or grass ley *subsoils* TN averaged 0.10%; higher under extensive grass or woodland (median 0.13 and 0.4%).

Because nitrogen resides mainly in the organic matter, not surprisingly there was strong correlation (r^2 0.6-0.9) in topsoil and subsoil. OM is reported as 1.72x measured Carbon and the commonly cited C:N ratio of 10:1 is expected to give a 0.058x relationship.

Most data set fitted to a lesser slope (0.04-0.05) and with a small but significant intercept which implies that C:N ratio diminishes as the level of organic matter (and TN) increases.

Notwithstanding, C:N ratio averaged about 10 for arable and leys, albeit with significant standard deviation (about ± 2). Clusters of 2-15 samples (usually taken in the same field) usually showed less variation within the cluster than between clusters. Clusters could have average C:N as low as 8:1 and as high as 12:1, implying influence of management, land use, soil type or texture. The data is investigated in more detail in the Southern report, where south and Midlands data are combined, and soil texture is shown to be highly significant.

On grassland and woodland, C:N tended to be higher (about 12:1) but again with significant difference between clusters.

C:N ratio in subsoil on average is 0.5 lower than in topsoil on arable, grass and woodland.

Dumas is a good method for measuring organic carbon because it gives C:N ratios broadly in line with expectations, unlike Carbon derived from Loss on Ignition methods which misleadingly implies C:N ratios of 12-14:1 or more.

2. Land Use and Soils

Region B: Central and West Midlands

The analysis corridor stretches from Learnington to Crewe with a branch from Lichfield to Nottingham (M1 junction 27). This whole area is characterised by red Triassic rocks..

The area comprises 35% arable land that was growing cereals, rape and occasional vegetable crops (1%), 3% was in maize. The majority was grassland: 36% was judged as well managed leys (some fields in arable-ley rotation). 20% extensively managed or 'rough' grassland with 2% under horse paddocks.

The proportion of arable land was greater in the south of the region. Average Annual Rainfall ranges from 650mm East of Birmingham to 790 mm on the Staffordshire ridge.

Land Use	Sample/survey	Proportion
	points	%
Arable	207	35
Maize	17	3
Ley (managed)	209	36
Poorer grassland	84	14
Horse paddock	16	3
Amenity grass	15	3
Woodland	36	6
Total	584	

Table 1. Region A: Land Use

Balanced data base of 584 profiles (see section 2)

Geology

British Geological Society (BGS) maps ¹ indicates Triassic Rocks with small occurrences of Carboniferous and Permian deposits that share similar reddening.

BGS maps are very detailed and indicate that 76% of the survey samples overlie variously named red mudstones, with smaller exposures of sandstones and siltstones (Table 2). However, much of the mudstone is covered by Drift Deposits which amount to 58% overall. These comprise Alluvium, River Terrace or Fluvioglacial Sand & Gravel and Glacial Till usually (but not wholly) derived from the red bedrocks. For full breakdown see Appendix 10.

Table 2. Region B: Geology Summary (frequency)

Parent material	Solid Geology	Drift Geology
Sandstones	16 %	none 12 %
Siltstones and mixed	9 %	none 7 %
Mudstones	75 %	none 22 %
Alluvium	any	11 %
Sand & Gravel	any	26 %
Glacial Till	any	19 %
Head or Peat	any	1 %
Disturbed	any	1 %

Soils

Topsoil and upper subsoil were hand-textured in all cases, and put into five groups according to clay content. The balanced data set in Table 3 indicates a predominance of topsoil textures in the sandy loam, sandy clay loam and medium clay loam category. Upper subsoils were more diverse with more cases of extreme textures (sands and clays). In 33% of instances the upper subsoil was heavier (i.e. contained more clay) than the topsoil and in 18% the subsoil was lighter (sandier) than topsoil. The influence of duplex (i.e. contrasting) profile texture is examined when analysing the nutrient data.

Soil Texture	Estimated	Topsoil	Upper
	clay		Subsoil
Very light LS, S	<9%	3 %	13 %
Light Loam SL, fSL, SZL	9-17%	38 %	28 %
Medium SCL, mCL, mZCL	18-26%	43 %	28 %
Heavier SC, hCL, hZCL	27-35%	14 %	17 %
Clay ZC, C	>35%	2.5 %	15 %
Peaty loam or peaty sand		0.2%	0.2%

Table 3. Region B: Soil Texture Summary (frequency in balanced data)

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL= heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay. Where upper subsoil contains two textures within 50cm the average is used e.g. mCL over C is treated as hCL (3).

Most of the areas marked by BGS as Drift-free Mudstone were characterised by loamier or even sandy topsoils with red clay encountered at depths from 40 to 80cm. Conversely on areas marked as overlain by Glacial Till or Sand, the underlying Mudstone was sometimes found within 60cm.

Each point was located on the Soil Survey of England and Wales 1:250 000 maps ²

25 associations are present, mainly as *Whimple 3* or *Clifton* but with significant inclusions of *Arrow, Wick 1* and *Bromsgrove/Brignorth* associations (Appendix 10).

General experience of surveyors was that the SSEW manual ² was a good guide to the soil profiles and drainage. However in the SSEW guide each association contains a range of *contrasting* profiles. Furthermore, in this survey for 26% of profiles the hand texture of topsoil was judged *outside* these generic descriptions (42% for upper subsoil texture).

Clearly neither SSEW nor BGS maps are safe to rely on to deduce the soil texture (or main soil type) without field examination. For details see Appendix 10.

Redness: 5% of the topsoils were 2.5YR (strong red), 19% 5YR (reddish brown), 53% 7.5YR (strong brown) and 23% normal brown (10YR or lesser hue). Subsoils tended to be redder 9%, 32, 33 and 16% respectively. Lighter and heavy soils had similar proportions.

References

1 http://mapapps.bgs.ac.uk/geologyofbritain/home.html

2 J.M.Ragg,, G.R. Beard, .H.George et al (1984) Soils and their Use in Midland and Western England. Soil Survey of England and Wales Bulletin 12

3. Sampling method and expression of nutrient levels

Region B: Central and West Midlands

Sampling grid

The data set is representative selection along the transept corridors from Learnington to Lichfield and thence to Crewe or Nottingham.

Frequency was 1 per 2-3 ha and a subset was taken at closer spacing (up to 5 per ha) in isolated clusters of 1-20 samples. The latter were measured for total N. All samples were measured for pH, available P, K, Mg and Organic Matter by Dumas method at NRM laboratory. For statistical evaluation three data sets were made:-

a) All data – for evaluation of topsoil : subsoil correlations of pH PKMg and OM.

b) Close spaced data isolated for evaluation of carbon : nitrogen relationships

c) **Balanced data** – to minimise risk of close-spaced cluster samples skewing the averages, 2 in 3 data were excluded to give a more representative data set for showing the regional values of pH PKMg OM and textural class.

Data points amount to a) 796, b) 398 and c) 584.

Sampling techniques

1. The corer method

- topsoil sample to standard depth (0-20/22cm) by a 1.5cm wide hand corer
- subsoil sample from 25cm-30cm* to 50cm by a 1cm diameter gouge auger

* material from 25-30cm depth could be excluded if topsoil.

2. Auger method

- representative sample of topsoil removed from Dutch auger
- representative sample from auger of upper subsoil (to 50cm)

Each sample was a composite from 5 places at and within 10 m of surveying point.

The average depths of identifiable 'topsoil' and 'subsoil' are shown in Table 4

Table 4. Region	B: Depth	of topsoil for	purposes of analysi	s

	mean	median	10-90%	n
Arable	29 cm	30 cm	25 – 32 cm	288
Leys	28 cm	28 cm	24 – 32cm	286
Extensive grass	26 cm	25 cm	20 - 30 cm	148
Amenity	27 cm	25 cm	25 – 32 cm	20
Wood	26 cm	25 cm	25 – 30 cm	50

Median subsoil start depth was 26cm by Corer method and 30cm by Auger.

On arable land and leys a significant proportion of the land had recognisable topsoil of 30cm or deeper, indicative of (current or former) deep cultivation. On the more extensive

grassland topsoil depth was less but commonly 25cm, again indicative of cultivation in the past.

Method	OM	1%	р	H	Pn	ng/l	Kn	ng/l	Mg	mg/l
	mean	med.								
Topsoil										
Corer *	4.5	4.0	6.3	6.3	21.3	17.6	132	112	188	128
Dutch Auger	3.9	3.4	6.4	6.4	20.5	16.8	136	98	168	122
U. Subsoil										
Corer *	2.5	2.0	6.6	6.6	13.9	10.4	100	88	210	125
Dutch Auger	1.8	1.5	6.7	6.7	10.8	6.8	98	75	198	112

 Table 5. Region B : Sampling method and soil results

* 440 and 356 samples were taken by Corer and Auger respectively.

The Corer technique registers higher Organic Matter (OM) in topsoil and subsoil by ~0.5%. This is to be expected especially on grassland because this method includes the surface layer of topsoil.

The Corer method obtains slightly higher topsoil P and significantly higher subsoil P than the Auger method ($\Delta 3 \text{ mg/l P}$). The effect on correlations is checked in foregoing sections.

The Corer method obtains very slightly lower pH and very slightly higher K and Mg which is unlikely to affect the correlation analysis.

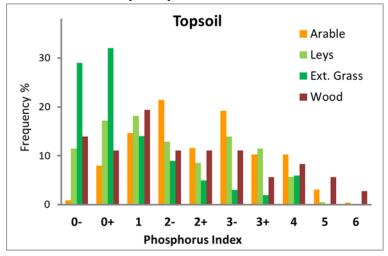
Differences in P and OM are probably because the corer method always samples the surface to 20cm and its subsoil sample can contain some transitional material (or deep topsoil) at 25-35cm whereas the auger method generally selects 'pure' subsoil. The method difference in OM and P is checked in more detail in the relevant sections.

Generally speaking this survey data is representative of upper subsoil 25-50cm. Likely nutrient gradients occur over this depth but the data shows what pH and nutrient levels roots are 'likely to encounter' as they venture deeper down.

Nutrients

All samples were analysed for pH, Olsen Phosphorus, Potassium (K) and Magnesium (Mg) by 10:1 extraction with 1M Ammonium Nitrate (ADAS method). The cluster samples were also analysed for total Nitrogen by Dumas method.

Interpretation	Index	P Olsen	Mg	Index	K
	P, Mg	mg/l	mg/l	K	mg/l
Very low	0	0-9	0-25	0	0-60
Low	1	10-15	26-50	1	61-120
Moderate	2	16-25	51-100	2-	121-180
Good	3	26-45	101-175	2+	181-240
High	4	46-70	176-250	3	241-400
Very High	5	71-100	251-350	4	401-600
Extreme	6	101-140	351-600	5	601-900
	7	141-200	601-1000	6	901-


Each result was classified according to the index system in The Fertiliser Manual RB209¹ reproduced above which ascribes the result to an index category.

In principle moderate is the *Target level* for arable and grass; "good" is target for rotations with vegetable crops. K index 2 is subdivided in RB209. In some parts of the report other P or K indices are divided into upper (+) and lower (-) parts for the purpose of discussion. Extremely high levels were very rare for P or K but more common for Mg.

1 AHDB (2017) The Fertiliser Manual (RB209)

4. Phosphorus

Region B: Central and West Midlands

4.1 Overview of phosphorus levels

Topsoil P

Arable land: P index 2 is considered optimal. The median here is 23 mg P/I (upper 2) but distribution is bimodal with peaks in lower index 2 and lower index 3 (probably related to soil textural class). 24% of samples were below target index though almost none < 5 mg/l. 14% were excessive (index 4 or higher).

PAAG (2019) survey data gives similar proportion below target (22%) and 50% of samples of index 3 or more compared to 42% here.

Grassland: leys also have a bimodal pattern with peaks at index 1 and lower 3 and overall median of 17 mg/l (lower index 2). 47% of samples lie below target. Extensive grass has very low P levels - median 8 mg/l (index 0) and 75% below target. The PAAG (2019) survey for all grass gives a lower proportion (34%) below target but note that the results shown here are from a topsoil depth of 20cm+ compared to the top 7.5 or 15cm as normally sampled.

35% of leys and 12% of extensive grassland were index 3 or higher compared to 26% in PAAG (2019) data.

Natural: amenity grass and woodland also have highly variable P analyses but the median (lower index 2) is significantly higher than extensive grassland, suggesting that the latter soils are being depleted of phosphate, possibly by neglect of fertiliser despite some P offtake due to grazing or cutting. The more productive grass leys do not have greater P fertility than natural amenity (park) grass or land under wood.

	Topsoil		Upper \$	Subsoil
	median	1 0-90%	median	10-90%
Arable	23 (2+)	10-51	12 (1)	5-37
Leys	17 (2-)	5-39	8 (0+)	2-25
Extensive Grass	8 (0+)	4-27	5 (0-)	2-18
Amenity	17 (2-)	4-29	10(1)	2-21
Wood	18 (2-)	5-54	10 (1)	3-46

Table 6 Region B : Typical Soil Phosphorus levels (mg/l)

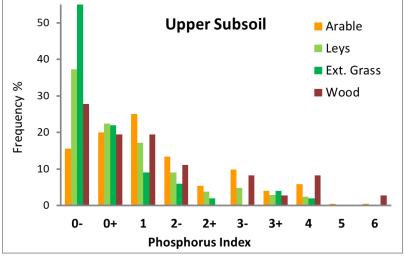


Figure 1b. Region B: Soil available Phosphorus (Balanced Data)

Subsoil P

Arable land: the median is 12 mg P/I (index 1) though could be much higher in some cases. 36% of cases were index 0 and 38% index 2 or above.

Grassland: leys had somewhat lower subsoil P than arable land with median of 8 mg/l (upper index 0) though the mode is extremely low (lower index 0). 60% of subsoils were index 0 of which 10% were below the NRM detection limit of 2.5 mg/l (entered as 2.0 in data base). 23% of subsoils were index 2 or above.

For extensive grass, median subsoil P was extremely low (5 mg/l). 77% of subsoils were index 0 and 15% below detection limit. 14% were index 2 or above.

Natural: amenity grass and woodland had highly variable P but the median (10 mg/l, index 1) might be a considered a typical value for 'natural' subsoils. 47% of amenity grass and woodland subsoils were index 0; 20% and 30% respectively index 2 or above.

Of course the above trends in soil P levels might be related to co-factors e.g. more arable points on lighter land, so the whole data set used for more detailed analysis. Amenity and extensive grass are combined.

4.2 Factors influencing phosphorus levels in topsoil

Multiple regression analysis (Appendix 11.1) indicates topsoil P strongly correlated with topsoil potassium in all cases except woodland, implying a (historical) management influence on both arable and grassland.

There is a negative correlation of topsoil P with topsoil texture class in all cases though only significant in arable and extensive grass data sets.

There is a strong positive correlation of topsoil P with topsoil OM% on the arable set, but only weak influence on the grassland or woodland.

There is a positive trend of topsoil P with pH on the grass leys data, but this is extremely weak (see Figure 2), and very low P levels are found over the pH spectrum.

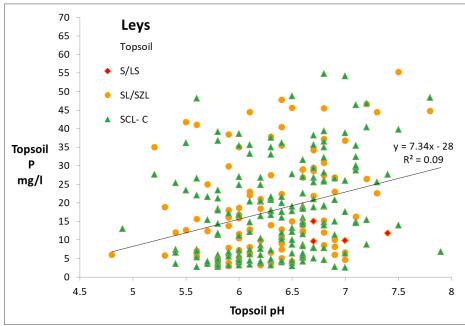


Figure 2: topsoil pH and Phosphorus. Grass leys

When topsoil redness was assessed there is no overall correlation though some evidence it is lowest on the reddest soils (5% which had 2.5YR hue, see Table 8).

Topsoil P and Topsoil texture

Tables 7a-7d show averages of all data up to P index 4. Index in parenthesis. Statistical analysis in Appendix 11.1.

Table 7a shows a major texture influence. P is higher on light loams and sandy soils. This is due to weaker P adsorption or historically more highly-fertilised crops grown on lighter land (maize and vegetables).

Class	Textures	Mean	Median	n	n with
		mg P/ I	mg P/ I		index ≥3
0	LS,S	52	55 (4)	10	
1	SL, SZL	29	29 (3-)	102	5
2	SCL, mCL (mZCL)	22.1	22 (2+)	127	4
3	hCL, hZCL	21.3	20 (2-)	35	
4	ZC, C	17.7	17 (2-)	5	

Table 7a Region B: Arable data Topsoil Texture and Phosphorus

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL= heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

Highly significant difference Class 0 > 1 > 2 (P < 0.001). No difference 2 - 3. Possible difference 3 > 4 (P = 0.17).

For grass **leys** the texture effect is minimal (Table 7b) – probably a real but very small decline with clay content. This suggests intelligent management of P levels on the cut grass. Extensive grass (Table 7c) demonstrates a clearer texture influence although the median differences are half the difference in means.

 Table 7b
 Region B: Grass Leys - Topsoil Texture and Phosphorus

Class	Textures	Mean	Median	n	n with
		mg P/ I	mg P/ I		index ≥3
0	LS,S	19.7	13 (1)	8	
1	SL, SZL	19.6	16 (2-)	93	
2	SCL, mCL (mZCL)	17.5	15 (1)	144	1
3	hCL, hZCL	15.9	14 (1)	36	
4	ZC, C	26.7	26 (3-)	5	

Possible difference: Class 1 > 2 and 3 > 4 (P < 0.01) but small (<2 mg P/l)

Class	Textures	Mean	Median	n	n with
		mg P/ I	mg P/ I		index ≥3
0	LS,S	17.5	17.5 (2-)	2	
1	SL, SZL	15.7	9.4 (0+)	63	
2	SCL, mCL (mZCL)	12.0	7.6 (0+)	66	
3	hCL, hZCL	8.0	6.7 (0+)	36	
4	ZC, C	5.8	6.5 (0+)	4	

Highly significant : Class 1 > 2 > 3 (P < 0.001). Possible difference 3 > 4 (P = 0.12).

For **woodland** – sandy and peaty soils tend to higher P but there are small differences between other textures (Table 7d).

Table 7d Region B: Woodland Topsoil Texture and Phosphorus

Class	Textures	Mean	Median	n	n with
		mg P/ I	mg P/ I		index ≥3
0	LS,S	31	30 (3-)	8	
1	SL, SZL	18.7	12.0 (1)	15	1
2	SCL, mCL (mZCL)	12.7	12 (1)	12	2
3	hCL, hZCL	17.3	16 (2-)	8	1
4	ZC, C	12	12 (1)	2	
Р	Peaty loam	24	24 (2+)	2	

Significant : Class 0 > 1 (P = 0.05). Possible Class 1 > 2 (P = 0.12).

4.3 Factors influencing phosphorus levels in subsoil

Multiple regression indicates that subsoil P is very strongly correlated with topsoil phosphorous (P = 0.8 in all cases). When data was plotted by corer and auger method there was a difference in intercept. This is typically about 2 mg/l rising to 5 mg/l on high P soils (Appendix 11.2).

There seems a consistent negative relationship of subsoil P with subsoil texture Class (overall P = 0.3).

There are positive relationships of subsoil P with subsoil OM% (P 0.1-0.4) which may be linked to sampling method.

On no data group could a meaningful correlation be found between subsoil pH and phosphorus. As Figure 3 shows, very low subsoil P can occur across the range of pH

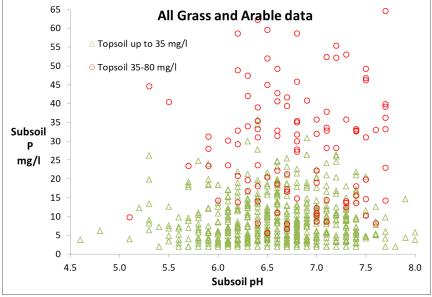


Figure 3: Region B : Subsoil pH and phosphorus

It would be expected that enhanced iron (haematite) in redder soils will absorb P more strongly. Redness is assessed in Table 8. Though there is no *overall* statistical correlation it suggests that strong and reddish brown subsoils tend to higher P levels than either non-red or the reddest soils

 Table 8: Region B: Soil Colour and Phosphorus Median mg P/I values for Arable+Grass

 whole data.

	Munsell Colours	Topsoil	Topsoil	Subsoil	Subsoil	n
		Sand-	Heavier	Sand-	Heavier	
		Medium		Medium		
0	10YR etc (brown,grey)	18.1	10.2	7.0	5.8	138,31,91,84
1	7.5YR (strong brown)	17.8	16.3	9.0	14.8	327.52,143,102
2	5YR (reddish-brown)	22.2	14.0	8.6	8.4	115,25,122,105
3	2.5YR (red)	5.9	7.6	5.0	7.0	30,5,27,39

Evaluation of influence of subsoil texture on subsoil P

This is examined in several graphs shown below on the Whole Data set (796)

The arable data of lighter topsoils (Figure 4a) exhibits a "change point" at about 35 mg P/l in topsoil (mid index 3). From 35-70 mg P/l the subsoil P rises sharply at about 80% the increase in topsoil P. Below 35 mg/l subsoil is about half topsoil P, possibly less on heavier subsoils.

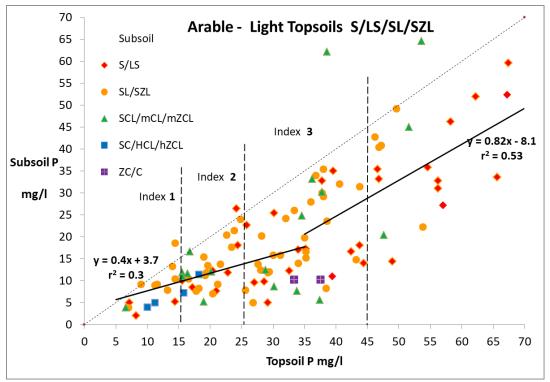


Figure 4a: Region B, Arable: P in Topsoil and Subsoil - sandy and light loam topsoils

Data for medium to heavy-textured topsoils is in Figure 4b. There are relatively few values in index 4 but the subsoil P again rises sharply above 35 mg P/l in topsoil Up to 35 mg P/l subsoil P is slightly less than half the topsoil P and slightly for heavier than medium subsoils.

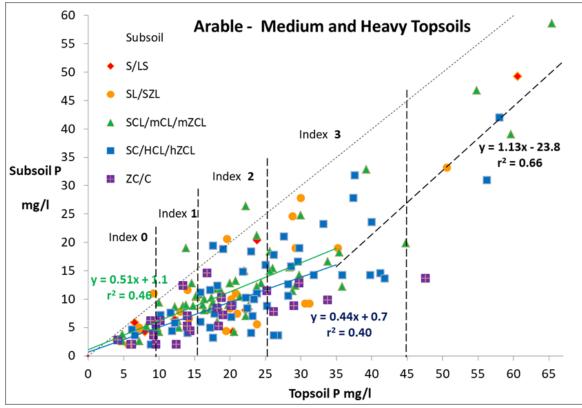


Figure 4b. Region B, Arable : P in Topsoil and Subsoil – Medium and Heavy topsoil. Green line is for subsoil textures S-mCL, blue for heavier subsoils, hCL-C.

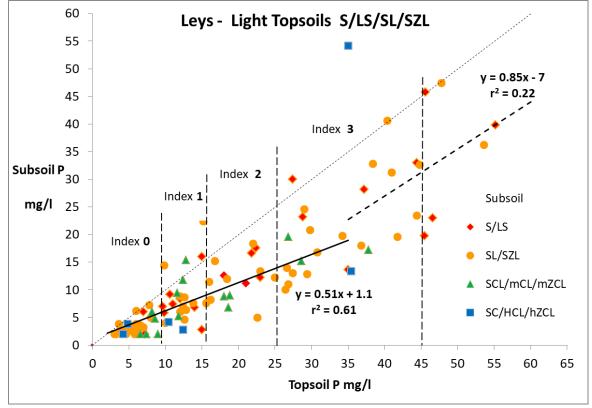


Figure 5a: Region B, Leys: P in Topsoil and Subsoil - sandy and light loam topsoils

For grass leys, lighter soils have very similar topsoil:subsoil relationships to arable data set. Though containing fewer high samples a change point at 35 mg/l P looks likely (Figure 5a).

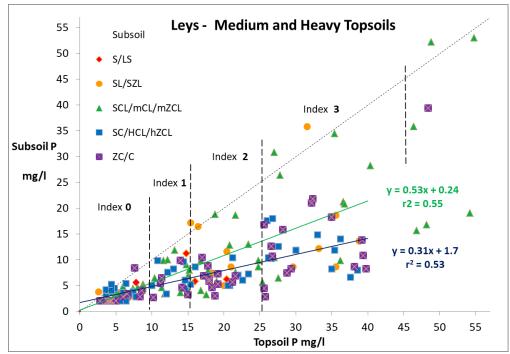


Figure 5b. Region B, Leys : P in Topsoil and Subsoil – Medium and Heavy topsoil. Green line is for subsoil textures S-mCL, blue for heavier subsoils, hCL-C.

For grass leys, medium and heavy topsoil (Figure 5b) the change point might be somewhat higher (40 mg/l. Sandy to medium subsoils give an identical plot to the arable data but stronger indication under grass that subsoil P is proportionately less in heavier subsoil.

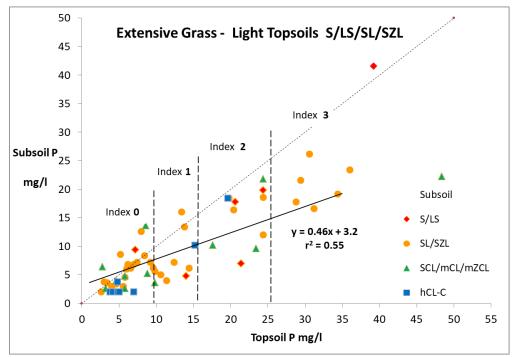


Figure 6a: Region B, Extensive and Amenity Grassland : P in Topsoil and Subsoil - sandy and light loam topsoils

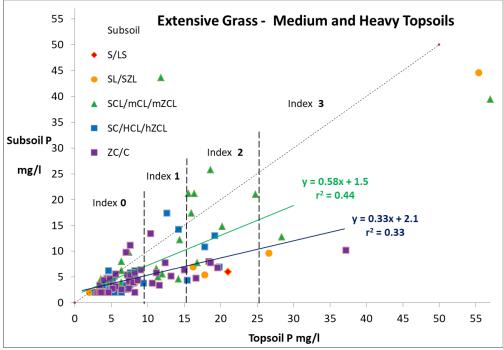


Figure 6b. Region B, Extensive and Amenity Grassland: P in Topsoil and Subsoil – medium and heavy topsoil. Green line is subsoil textures S-mCL, blue is heavier subsoils, hCL-C.

For extensive and amenity grassland, the correlations (Figures 6a and 6b) are very similar to the grass leys. r² is worse because of a significant minority of samples with higher P in the subsoil than topsoil.

Subsoil P > topsoil P was found in only 8 cases on arable land, 10 on leys and 20 in extensive grassland. 8 cases were disturbed profiles, 8 cases on Alluvium (layered deposit), and in 9 cases the subsoil was significantly stonier than the topsoil.

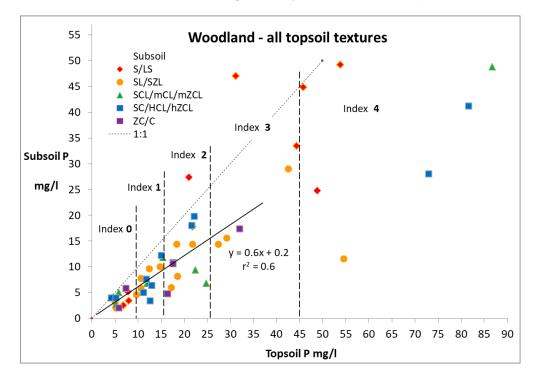


Figure 7. Region B, Woodland: Phosphorus in Topsoil and Subsoil – all topsoil textures.

The Woodland data (Figure 7) shows good correlation up to 35 mg/l P in topsoil with proportionately more P in subsoil than grass or arable data sets (factor 0.6). Some woodland can have extremely high P levels for reasons that are unclear. One point (not shown) had 206 mg P/l in topsoil and 154 mg/l in the clay subsoil beneath.

4.4 Prediction of phosphorus in subsoil

The main determinant is topsoil P and the secondarily subsoil texture class: heavy loam and clayey subsoils consistently show proportionately lower subsoil P in Figures 3 to 6. From the similarity of the fitted lines, arable versus grass does not seem to significantly affect the relationship although levels in topsoil and subsoil tend to be higher on arable fields than leys than extensive grass, and the higher soil P levels occur chiefly on sandy or light loam textured horizons.

On lighter soils there is a clear change point at about 35 mg/l above which subsoil P rises sharply with topsoil P. On medium and heavier soils the change point may be slightly greater (40 mg/l).

To produce an overall correlation data arable and grass were combined and disturbed land was excluded, giving a unified data set of 722 samples which were subdivided for topsoil P up to 35 mg/l or 36-80 mg/l. In Figure 8a the plots are identical for sandy, light loam or medium subsoil texture, but heavier subsoils fit to plots of lower slope.

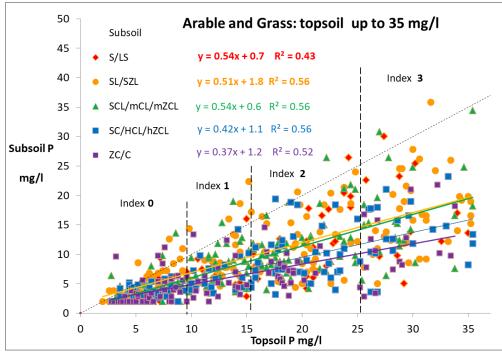


Figure 8a Region B, Combined data – arable and grass: Phosphorus in Topsoil and Subsoil.

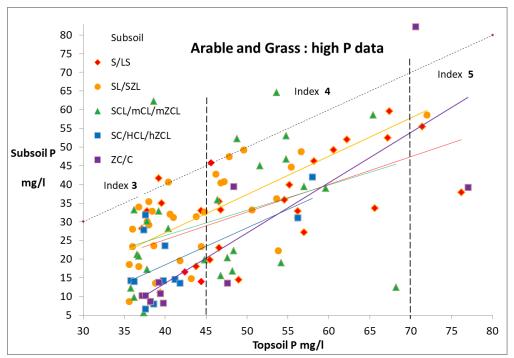


Figure 8b Region B, Combined data – arable and grass: Topsoil Phosphorus 35-80 mg/l. There a few data >80 mg/l (not shown) for which subsoil P varied from 40-110 mg/l.

The unified data for high P soils (Figure 8b) confirms there is no distinguishable difference for subsoil textures sand to medium, though for heavier loams and clays the change-point to steeper slope might be nearer 40 mg/ topsoil P.

Regression analysis confirms that over normal P range corer method averaged 2 mg P/I greater than auger method, increasing to 5-8 mg/I difference on the higher P samples (Appendix 11.3).

When subsoil OM% is included in the regression it improves r^2 in all cases. For sandy to medium soils each 1% increase in subsoil OM (up to 6%) is associated with a 1.2-1.5 mg/l increase in subsoil P.

For heavier soils the OM effect is less marked at normal topsoil P (up to 35 mg/l) but substantial at high index (up to 10 mg/l P per 1.0% increase in OM). On all textures woodland showed 1.7 mg P/l increase per 1% OM.

The above effects in part may be because subsoil OM% is affected by the sampling method where the corer can include material in transitional horizons between topsoil and 'pure' subsoil horizons (see Section 6).

A series of regression equations are produced (Appendix 11.4), summarised below.

a) is up to 35 mg P / I in topsoil (mid index 3), b) is 36-80 mg/l (up to low 5).

Sandy, light loam and medium subsoil

a) Subsoil P	= Topsoil P * 0.52 + = Topsoil P * 0.75 -		$r^2 = 0.54$ $r^2 = 0.28$
a) Subsoil P	= Topsoil P * 0.53 +	Subsoil OM * 1.2 - 1.2	$r^2 = 0.58$

b) Subsoil P = Topsoil P * 0.74 + Subsoil OM * 1.5 - 6.6 $r^2 = 0.30$ Heavy loam subsoils (SC, hCL, hZCL) $r^2 = 0.56$ a) Subsoil P = Topsoil P x 0.42 + 1.1 b) Subsoil P Topsoil P x 1..21 $r^2 = 0.60$ - 32 = = Topsoil $P \times 0.43$ + Subsoil $OM \times 0.7 - 0.4$ $r^2 = 0.58$ a) Subsoil P b) Subsoil P = Topsoil P x 1..05 + Subsoil OM x 9.7 – 44 $r^2 = 0.85$ Clay subsoil (ZC, C) a) Subsoil P = Topsoil P x 0.37 1.2 $r^2 = 0.52$ + $r^2 = 0.60$ b) Subsoil P = Topsoil P x 1..21 32 = Topsoil $P \times 0.36$ + Subsoil $OM \times 0.15 + 0.8$ $r^2 = 0.54$ a) Subsoil P Topsoil $P \times 1.07 + Subsoil OM \times 9.7 - 44$ $r^2 = 0.85$ b) Subsoil P = Woodland (any texture and P level) $r^2 = 0.60$ Subsoil P = Topsoil P x 0.60 + 0.2Subsoil P =Topsoil P x 0.50 + Subsoil OM% x 1.74 - 2.0 $r^2 = 0.73$

Typical subsoil P that might be expected is shown in table 5. If subsoil texture is known the topsoil P can account for about 56% of the variation in subsoil P (r^2 0.56) and subsoil OM a further 20%.

However there is still significant uncertainty especially on higher P soils.

4.5 Agronomic Summary: phosphorus levels on red soils of the Midlands

Indices are in parenthesis and for this report divided in lower and upper halves (+/-).

The balanced data base shows median topsoil values for arable data of 23 mg/l (index 2+) > leys, amenity grass, woodland 17-18 mg/l (2-) >> extensive grassland 8 mg/l (0+).

However (as national surveys find) there is large range: 24% of arable soils below target index (2) and 14% index 4. 47% of leys and most extensive grassland were below target index, though based on a greater topsoil sampling depth (20cm-30cm) than is conventionally used (7.5-15cm). The latter might register higher values in cases were P inputs have been concentrated on the surface.

Topsoil P levels were significantly higher on lighter land for arable and extensive grassland though on leys were even across all textures. In woodland P levels were higher on sandy and peaty soils. There was no correlation with topsoil pH.

Subsoil medians were arable 12 mg/l (1) > amenity grass, woodland 10 mg/l (1) > leys 8 mg/l (0+) > extensive grassland 5 mg/l (0-).

38, 47, 48, 60 and 77% respectively of subsoils were index 0. 10% of ley and 15% of extensive grass subsoils were below laboratory detection limit (2.5 mg P/I).

38, 20, 30, 23 and 14 % respectively of subsoils were index 2 or above.

Multiple regression analysis indicates that subsoil P very strongly related to topsoil phosphorous (P = 0.8). There are lesser correlations with subsoil potassium (P = 0.5), subsoil texture, subsoil organic matter and sampling method – samples taken by corer averaged ~ 2 mg/l more P in the subsoil than auger method, rising to a 5 mg/l difference on high P soils.

There is correlation of subsoil P with subsoil OM% and the latter also is greater by the corer method. There is no correlation of subsoil P with subsoil pH.

The reddest soils (2.5YR) showed a slight reduction in P levels and the slightly reddened soils (7.5YR) were highest, but the differences are not statistically significant.

56% of the difference in subsoil P can be accounted for by topsoil P adjusted for subsoil texture and a further 20% if subsoil OM is known. There is a distinction change point above 35 mg P/I on light and medium topsoil above which the subsoil P rises more quickly. A similar effect occurs on heavier land above about 40 mg/I though more unpredictable.

 Table 5: Prediction of Subsoil Phosphorus (arable or grassland).

	Topsoil	Regression Equation	ession Equation at Topsoil P mg/I				
Class	Texture	based on	10	20	30	45	70
0-2	LS to mZCL	Topsoil P only	6	12	17	30	49
		Topsoil P and subsoil OM%	5-9	11-15	16-20	29-32	48-51
3	hCL/hZCL	Topsoil P only	5	10	14	22	53
		Topsoil P and subsoil OM%	5-7	9-11	13-16	14-48	41-75
4	C/ZC	Topsoil P only	5	9	12	22	53
		Topsoil P and subsoil OM%	5	8 – 9	12-13	14-48	41-75
0-4	All woodland	Topsoil P only	6	12	18	27	42
		Topsoil P and subsoil OM%	5-11	10 -16	12-18	22-28	35-41

Range values correspond to subsoil OM 1.0 to 4.5%.

[Equations are in preceding section.]

Table 5 indicates that heavy loam and clay (or medium-over-clay) upper subsoils have proportionately less P in subsoil than medium or sandy subsoils. At topsoil 20 mg P/l the subsoil (to 50cm) is typically 12 (1) for sandy, light and medium loamy soils and 9 mg/l (0+) for clay subsoils. Results by corer method are about 1 mg/l higher and auger 1mg/l lower than shown, and almost certainly there is a decline in P with depth within the upper subsoil to 50cm which gets averaged out in any sample taken.

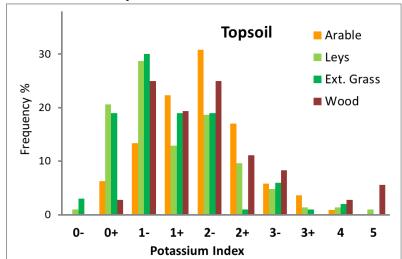
Each increase of 1% organic matter in the subsoil up to 6% corresponds to an increase in subsoil P of 1.1 mg P/I on soils up to 35 mg P/I, with bigger effect on high P heavier soils.

Higher subsoil OM is due to carry-down of topsoil material by earthworms or deep ploughing or deep rooting. Reasons for proportionately less P in heavy subsoils include less earthworms, less rooting, less translocation of P in soluble organic and inorganic forms from topsoil and increased retention capacity so less is 'available' in the soil test. The data showed no distinction between sandy and medium subsoils (S – mCL texture).

Natural soils under woodland or amenity grassland have higher subsoil P levels than extensive grassland or the more intensively managed leys. This suggests that productive

utilisation of grassland may lead to a *decline* in subsoil P rather than enrichment (as is commonly supposed).

The higher subsoil levels in arable soils are linked to predominance of lighter textures. Once topsoil exceeds 35 mg/l, subsoil will be index 2. At topsoil index 4 (>45 mg P/l) the subsoil is likely to be index 3 on all but heaviest subsoils.


There is an economic case to curtail agricultural phosphorus inputs to run-down soils which are above 35 mg P/I (mid 3). Assuming such soils are not subject to run-off, the environmental case is less clear a) because downwards movement of P in lighter undrained soils is not a problem and b) on heavier subsoils with underdrains P is absorbed more strongly and levels rarely exceed index 1 provided topsoil P is less than 35 mg/l. However in this data lighter upper subsoils could overlie heavier *lower* subsoils which may be underdrained. See section 1.

The is a case for ensuring all arable and grass soils attain target mid index 2 (20 mg P/) on the grounds that this will ensure subsoil is above P index 0 which will help deep rooting and support grass or crops during times when the top 25cm has dried out.

Subsoil P cannot be predicted satisfactorily from topsoil P on disturbed/ remade land and (layered) alluvial deposits or at very high P index over heavier subsoil. In such cases subsoil should be sampled at same time as topsoil.

5. Potassium

Region B: Central and NW Midlands

5.1 Overview of potassium levels

Topsoil K

Arable land: K index 2- is considered optimal and is the modal category here (31% of the samples) and the median value (131 mg K/l). 42% of samples are below target and 27% above target of which only 10% are index 3 or higher. The PAAG (2019) national survey showed fewer samples below target (24%).

Grassland: leys have a bimodal pattern with peaks at index 1- and 2-. The median is much lower than arable land at 89 mg/l (mid 1) and 82% of samples lie below target index. Extensive grass has marginally lower K levels (median 84 mg/l) and 90% below target.

The PAAG (2019) survey showed a lower proportion of grassland below target K index (41%) though the results shown are based on a deeper topsoil sample than normally used (0-15cm for leys and 0-7.5cm for long term grass) and some samples were taken during periods of peak growth rate.

Natural: amenity grass tends to higher K levels than other grassland as does woodland, median is 124 mg/l (2-), but with very large range. The implication is that managed grassland is being depleted of potassium in relation to "natural" soils.

	Topsoil		Upper \$	Subsoil
	median	10-90%	median	10-90%
Arable	131 (2-)	71-243	101 (1+)	59-185
Leys	89 (1-)	50-227	76 (1-)	38-174
Extensive Grass	84 (1-)	52-179	65 (1-)	43-144
Amenity Grass	98 (1+)	49-185	75 (1-)	41-114
Wood	124 (2-)	73-312	95 (1+)	43-303

Table 6. Region B : Typical Soil Potassium levels (mg/l)

Figure 9a. Region B: Soil available Potassium in Topsoil

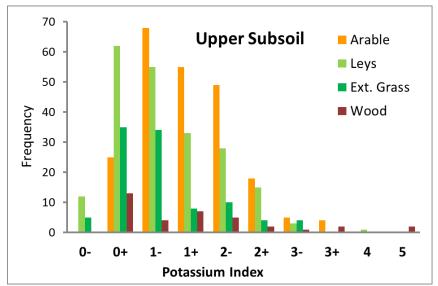


Figure 9b. Region B: Soil available Potassium in Subsoil (Balanced Data)

Subsoil K

Arable land: the median is 101 mg K/I (upper index 1). Few samples were index 0 (11%) or above index 2- (12%).

Grassland: has lower subsoil K than arable land with median of 76 mg/l (1-) for leys and 65 mg K/l for extensive grass. 40% of subsoils were index 0.

Natural: amenity grass is comparable with leys. Woodland tends to higher subsoil K (median 95 mg/l, 1+) but with a large range.

The above trends in soil K levels might be due to co-factors e.g. more arable points were on lighter land, so these are now analysed with whole data set used. Amenity and extensive grass are combined.

5.2 Factors influencing potassium levels in topsoil

Multiple regression analysis (Appendix 11.5) indicates topsoil K strongly related to topsoil phosphorus (P > 0.5) and weakly related to topsoil pH (P = 0.2). Sampling method was insignificant except on extensive grassland. Topsoil organic matter and topsoil texture had weak influence on K (P = 0.1) and there was no relationship with Average Annual Rainfall. On average the topsoil K increases about 25 mg/l with every 1 unit rise in pH (on all texture classes) but low K could occur across the whole range of pH (Figure 10). Leys showed a similar weak trend.

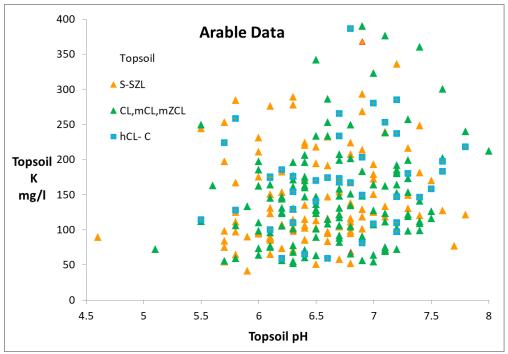


Figure 10: Region B arable data Topsoil pH and Potassium.

Topsoil K and topsoil texture

Texture influence becomes more apparent when categories are isolated

10	Averages of all data. Index in parenthesis. Maximum value 422 mg K/I.							
	Class	Textures	Mean	Median	n			
			mg K/ I	mg K/ I				
	0	LS,S	211	181 (2+)	10			
	1	SL, SZL	139	122 (2-)	107			
	2	SCL, mCL (mZCL)	148	132 (2-)	131			
	3	hCL, hZCL	168	167 (2-)	36			
	4	ZC, C	199	183 (2+)	5			

Table 7aRegion B: Arable data Topsoil Texture and PotassiumAverages of all data. Index in parenthesis.Maximum value 422 mg K/l.

Class 3 > 2 ($P_{twotail} = 0.15$) and Class 4 > 3 (P = 0.20), with an increase of about 25 mg K/l per texture class.

A disproportionate representation of the sandy topsoils were in maize stubble which may account for their high average K level. Otherwise there is a trend of increasing potassium with textual class, especially between medium and heavy loams and clays.

Grass leys show a significant textural influence with K increasing in order light loams medium loams and heavy loams (Table 7b). Extensive Grass, Amenity and Woodland (Tables 7c-7e) show similar trends though not significant at P < 0.2 (80% confidence).

The conclusion is that very sandy topsoils do *not* necessarily have lower K levels than other soils. But the expectation is that potassium levels will be about 10 mg/l higher in medium than light loams, a larger jump to heavier loams (30 mg K/l) with a further small 10 mg/l increase to clays, thus amounting a total texture-induced difference of about 50 mg K/l.

Table 7b Region B: Grass Leys -Topsoil Texture and Potassium

Class	Textures	Mean	Median	n
		mg K/ I	mg K/ I	
0	LS,S	113	112 (1+)	8
1	SL, fSL, SZL	102	77 (1-)	91
2	SCL, mCL (mZCL)	117	88 (1-)	141
3	hCL, hZCL (SC)	139	131 (2-)	35
4	ZC, C	128	130 (2-)	4

Averages of all data. Index in parenthesis. Five samples excluded 438-1600 mg K/l.

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL = heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

Possible differences Class 3 > 2 ($P_{two tail}$ 0.14) and Class 2 > 1 (P 0.11). Large jumps between Class 2 to 3 or 4 (40 mg K/I).

Table 7c Region B: Extensive Grass Topsoil Texture and Potassium

Averages of all data. Index in parenthesis. Maximum value 411 mg K/l.

Class	Textures	Mean	Median	n
		mg K/ I	mg K/ I	
0	LS,S	109	109 (1+)	2
1	SL, SZL	104	78 (1-)	51
2	SCL, mCL (mZCL)	100	75 (1-)	62
3	hCL, hZCL	94	95 (1+)	34
4	ZC, C	110	103 (1+)	4

No significant differences, though medians suggest a trend of Class 4 > 3 > 2.

Table 7c Region B: Amenity Grass Topsoil Texture and Potassium

Averages of all data. Index in parenthesis. Maximum value 228 mg K/l.

Class	Textures	Mean	Median	n
		mg K/ I	mg K/ I	
1	SL, SZL	87	75 (1-)	11
2	SCL, mCL (mZCL)	104	87 (1-)	9
3	SC, hCL, hZCL	116	116 (1+)	1

Class 2 > 1 is not significant (P = 0.55) given the small size of data set.

Table 7d Region B: Woodland Topsoil Texture and Potassium

Averages of all data. Index in parenthesis. Three data excluded, 485-1001 mg K/l.

Class	Textures	Mean	Median	n
		mg K/ I	mg K/ I	
0	LS,S	111	96 (1+)	8
1	SL, SZL	124	107 (1+)	16
2	SCL, mCL (mZCL)	132	99 (1+)	13
3	SC, hCL, hZCL	166	125 (2-)	9
4	ZC, C	158	158 (2-)	1
Р	Peaty loam	144	144 (2-)	2

Possible difference Class 3 > 2 (P = 0.3) with difference in median of 33 mg K/l.

5.3 Factors influencing potassium levels in subsoil

Multiple regression analysis (Appendix 11.5) shows that subsoil K is strongly related to topsoil K (P > 0.75) and subsoil P (P > 0.45), and weakly correlated with subsoil organic matter (P = 0.2) and pH (P = 0.15). However, the Figures below show major effects of texture on the nature of the topsoil:subsoil K relationship (the slope).

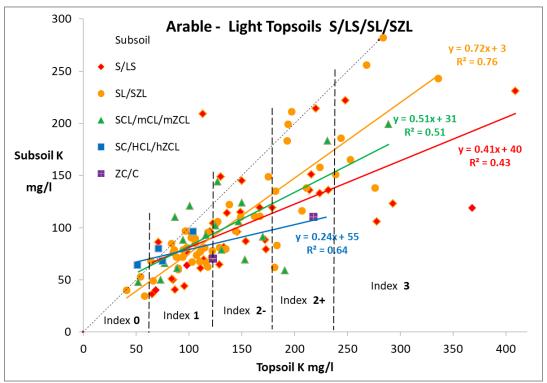
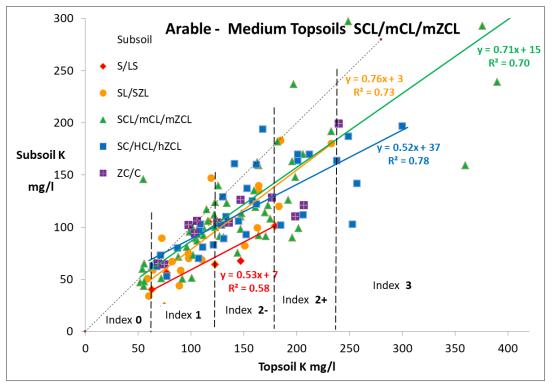
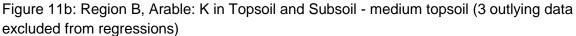
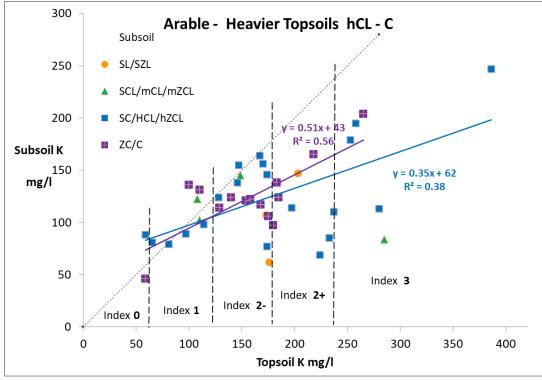
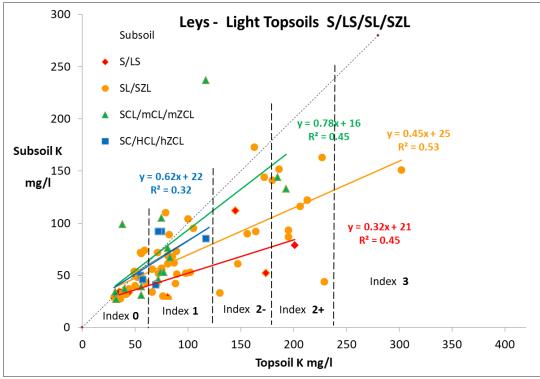




Figure 11a: Region B, Arable: K in Topsoil and Subsoil - sandy and light loam topsoils

Figure 11a isolates data with sandy or light loam topsoil. Where subsoil is light loam there is a strong linear relationship - subsoil K about 0.75x topsoil K. Where subsoil is very sandy a curve fits better ($r^2 = 0.47$) suggesting that above 120 mg K/l in subsoil it has more difficulty holding onto K. Medium subsoils fit a 0.5 slope with intercept (absolute minimum) of 31 mg/l subsoil K; heavy loams and clays show a diminished 0.25 slope and intercept of 55 mg K/l.

Data for medium topsoils is shown in Figure 11b. Light loam subsoils follow an identical regression line to Figure 11a. Medium subsoils have similar slope with increased intercept. Heavy loam and clay subsoils fit to same regression (combined line is shown) implying 53% slope and an intercept of 37 mg K/l in subsoil. Sandy subsoils show a similar reduced slope probably indicative of increased leachability compared to a medium-textured subsoil.




Figure 11c: Region B, Arable: K in Topsoil and Subsoil - heavy loam or clay topsoil

In Figure 11c (data with heavier topsoil) there are relatively few medium or light loam subsoils. Heavy loam and clay subsoils fit to similar plots and overall slope is 0.37 with large intercept of 60 mg/l subsoil K. Only two data were index 0.

The high correlation coefficients of Figures 11a-c indicate that on arable soils the subsoil K can be predicted from the topsoil provided textural differences are taken into account.

- For light loam subsoils subsoil is 75% of topsoil K over a wide range.
- For sand or loamy sand subsoils the subsoil K may be a lower proportion above a critical topsoil level due to high leaching losses.
- For medium subsoils proportion is reduced when topsoil is lighter than subsoil.
- Heavy loam and clay subsoils are indistinguishable but tend to result in a lower proportionate increase (25-52%) but with an intercept of 40-60 mg/l subsoil K implying that this would be present regardless of topsoil K and at 70-90 mg/l in topsoil K the subsoil K is similar.

A more precise calculation is given in next section.

A similar approach is applied to Grass leys in Figures 12a-c

For lighter topsoil under leys (Figure 12a) the pattern is different to arable (Figure 11a) in that slope is greatest on medium and heavy subsoils and decreases progressively on light loams and sandy subsoil. All plots have an intercept of about 20 mg K/I. Parity of subsoil K occurs at or below 50 mg/l topsoil K. The difference compared to the arable set may be due to lack of deep cultivation, reducing K transmission to subsoil (and a large number of samples at index 0 for topsoil and subsoil).

Figure 12a: Region B, Leys: K in Topsoil and Subsoil - sandy and light loam topsoil

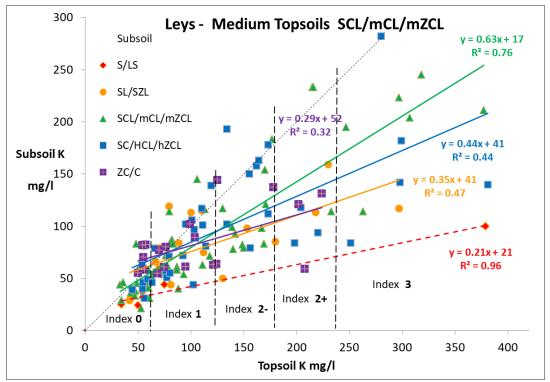


Figure 12b: Leys: K in Topsoil and Subsoil - Medium topsoil. (3 very high points omitted).

Leys with medium topsoil (Figure 12b) give similar plots to lighter data (Figure 12a); subsoil K tends to be lowest on light loam and sandy textures.

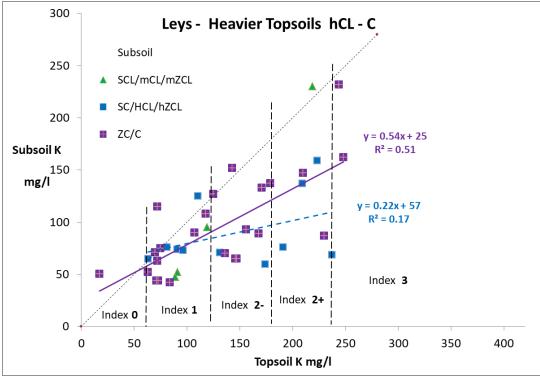
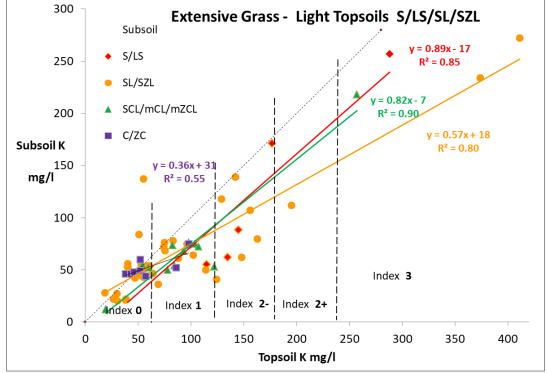



Figure 12c: Region B, Leys: K in Topsoil and Subsoil - Heavier topsoil.

In Figure 12c the heavy loam subsoils have a poor correlation. When combined with clay subsoils the overall slope is 0.43 (similar to arable Figure 11c) but with a lower intercept of 35 mg/l subsoil K ($r^2 = 0.39$). Only one topsoil was index 0 (on alluvium).

It seems leys behave differently to arable soils especially lighter textures.

Plots are also compared for extensive grass below.

Figure 13a: Region B, Extensive and Amenity Grassland: K in Topsoil and Subsoil - sandy or light loam topsoil.

Under extensive grass on lighter topsoils, the slope of line decreased from light loam to medium to heavy subsoils, similar to plots for leys (Figure 12a) whereas sandy subsoils show a steeper line.

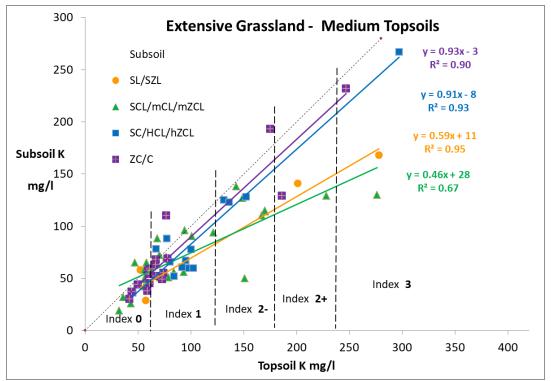


Figure 13b: Extensive and Amenity Grassland: K in Topsoil and Subsoil - medium topsoil.

In Figure 13b the unusual almost 1:1 relationship on heavy loam subsoils may be due to inclusion of samples with high organic matter or stony subsoil. And the majority of clay subsoils here were alluvial soils.

Medium and light loam subsoils are not too different to leys (Figure 12b).

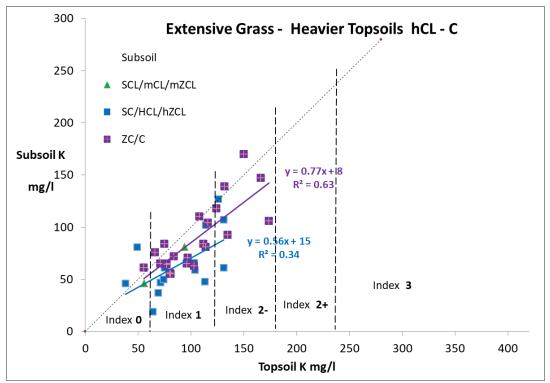


Figure 13c: Extensive and Amenity Grass: K in Topsoil and Subsoil - Heavier topsoil.

Figure 13c also contains a high representation of alluvial soils and disturbed soils, implying closer correspondence of subsoil and topsoil K.

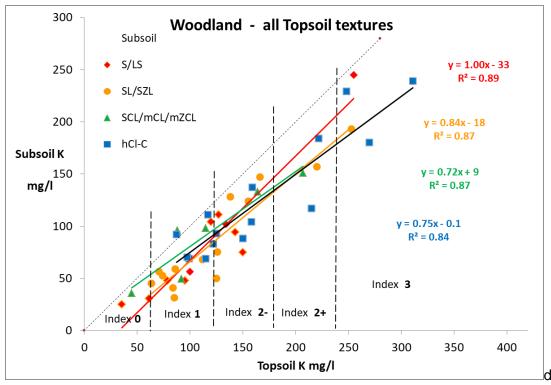


Figure 14: Region B, Woodland: K in Topsoil and Subsoil. 3 data omitted (485-1001mg/l)

Under woodland there is very strong relationship and about 0.8 the topsoil K is registered in subsoil over the range of textures. This suggests greater equilibration has occurred than under arable or grassland where potassium inputs to the topsoil in fertiliser and manures and offtakes in crops and grass can cause relatively rapid changes in the topsoil K.

5.4 Prediction of subsoil potassium

The graphs beforehand suggest a difference between arable and grassland sites, and different relationship according to subsoil texture. Topsoil texture is of minor importance and is discounted for modeelling purposes.

In the arable data points above topsoil K of 300 mg/l (240 for sandy subsoils) are excluded to avoid disproportionate weighting of the correlation by higher points. (And they represent cases where deficiency of K in subsoil is extremely unlikely and not of agronomic concern).

For grassland, leys, extensive grassland and amenity were combined. Soils on alluvium were excluded and all data with topsoil K exceeding 240 mg K/l.

Co-factors

Regression analysis indicated that sampling method could have an influence with a small (~9 mg/l) increase in subsoil K by corer data compared to auger for arable and 5 mg/l increase under grass.

Inclusion of measured subsoil OM% improved the correlation on arable land, especially on lighter soils, but on grassland it had a weak influence which turned negative on the heavier subsoil textures.

On arable data for sandy to medium subsoils an increase of one stone category (about 10% by volume) was associated with a 9 mg/l increase in subsoil K (or 7.5 mg/l per stone class plus 7 mg/l per 1% subsoil OM). However, on heavier subsoils and alluvium light to medium textures increased subsoil stoniness corresponded with a reduction in subsoil K.

A series of regression equations are produced for arable (A) and grassland (G) in Appendix 11.6 and 11.7 and are summarised below and used to give predicted values in Table 8.

Sand or loamy sand upper subsoil = Topsoil K x 0.64 + 9 $r^2 = 0.48$ A. Subsoil K = Topsoil K x 0.57 + Subsoil OM% x 9.1 + 1 $r^2 = 0.52$ A. Subsoil K A. Subsoil K = Topsoil K x 0.65 + Subsoil stone class x 10.5 - 3 $r^2 = 0.52$ $r^2 = 0.65$ G. Subsoil K = Topsoil K x 0.58 + 8 Light loam upper subsoil $r^2 = 0.70$ A. Subsoil K = Topsoil K x 0.71 4 + + Subsoil OM% x 7.9 - 9 $r^2 = 0.72$ A. Subsoil K = Topsoil K x 0.71 A. Subsoil K Subsoil stone class x 8.9 - 5 $r^2 = 0.72$ = Topsoil K x 0.71 +G. Subsoil K = Topsoil K x 0.48 + $r^2 = 0.53$ 23 Medium upper subsoil = Topsoil K x 0.69 A. Subsoil K 15 $r^2 = 0.54$ +A. Subsoil K = Topsoil K x 0.69 Subsoil OM% x 6.1 + 4 $r^2 = 0.54$ + $r^2 = 0.55$ = Topsoil K x 0.69 + Subsoil stone class x 8.5 + 7A. Subsoil K G. Subsoil K = Topsoil K x 0.67 + 12 $r^2 = 0.67$ Heavy loam or clay upper subsoil A. Subsoil K = Topsoil K x 0.43 + 50 $r^2 = 0.47$ A. Subsoil K = Topsoil K x 0.43 + Subsoil OM% x 4.3 + 42 $r^2 = 0.48$ = Topsoil K x 0.43 $r^2 = 0.48$ A. Subsoil K Subsoil stone class x 6.2 + 54G. Subsoil K = Topsoil K x 0.47 + (heavy loam) $r^2 = 0.40$ 32 $r^2 = 0.35$ G. Subsoil K = Topsoil K x 0.37 + 47 (clav) G. Alluvium Subsoil K = Topsoil $K \times 0.43$ + Subsoil OM% $\times 4.1$ + 14 $r^2 = 0.57$ Light and medium subsoils on Alluvium Topsoil K x 0.88 + Subsoil OM% x 2.9 - 5 G. Subsoil K $r^2 = 0.42$ = Woodland (any texture) Subsoil K = Topsoil K x 0.82 - 12 $r^2 = 0.86$ Topsoil K x 0.81 + Subsoil OM% x 2.0 - 17 Subsoil K = $r^2 = 0.86$

5.5 Agronomic conclusion: potassium levels in red soils of the Midlands

In this region a large range of potassium levels were found, with arable topsoils tending to higher K (median 131 mg K/l) than grass (87 mg K/l) though in both cases sampling depth was somewhat deeper than normally used (0-15cm, less on long-term grass).

Under both arable and grassland the K in topsoil tended to increase with clay content light loams < medium loams < heavier loams < clays

Typically clay topsoils were 40 mg K/I higher than medium topsoil (SCL/mCL/mZCL)

Topsoil K strongly correlates strongly with topsoil phosphorus (a management influence) and weakly with pH where a 1 unit rise corresponded to $\Delta 25$ mg K/I. Topsoil organic matter had weak influence and there was no effect of Average Annual Rainfall.

	Subsoil	Equation	at	Topsoil K	mg/l		
Class	Texture	based on	60	120	180	240	300
0	S, LS	Topsoil K only	47	86	124	163	>150
		Topsoil K & subsoil OM%	44-76	79-111	113-144	147-178	
		Grass	43	78	112	147	
1	SL, SZL	Topsoil K only	47	89	132	174	217
		Topsoil K & subsoil OM%	42-69	84-112	126-154	169-197	
		Grass	52	81	109	138	
2	SCL,mCL	Topsoil K only	56	98	139	180	222
		Topsoil K & subsoil OM%	52-73	93-115	134-157	176-197	
		Grass	52	92	133	173	
3,4	hCL to C	Topsoil K only	76	102	127	153	179
		Topsoil K & subsoil OM%	72-87	97-113	122-139	148-164	
3	hCL/ZCL	Grass	60	88	117	145	
4	C,ZC	Grass	69	91	114	136	
3,4		Grass on Alluvium	44-58	71-85	96-110	121-136	

Table 8:	Prediction of Potassium levels in upper subsoil
Panges (of values corresponds to subsoil OM of 1.0 and 4.5%

Ranges of values corresponds to subsoil OM of 1.0 and 4.5%.

S = sand, LS = loamy sand, SL = sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL= heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

Subsoil K correlates significantly with the topsoil K but this relationship alters with subsoil texture and on arable sites is influenced by subsoil organic matter - each 1% increase in SOM (capped at 6%) was associated with increase ranging from $\Delta 4$ mg K/I on clay subsoils to $\Delta 9$ mg/l on light loam subsoils. Some of this may be due to history of deep cultivation or earthworms moving topsoil into the subsoil.

For the same topsoil K, the subsoil K under grass tends to be approximately 10 mg K/l less than arable sites and is unrelated to OM content. Under grass there may be less deep disturbance or mixing of topsoil material than on arable land.

On sandy and medium soils, an increase in subsoil stones by one category (about 10% by volume) is associated with \triangle 8 mg/l increase in subsoil K, which is likely due to a concentration by the stones. However, because the amount of soil is reduced the net amount of K available to roots is unchanged. In some cases K measured in stonier subsoils was greater than topsoil. This of course implies that movement by leaching is occurring.

Overall, 50-75% of the variation in K level in the upper subsoil was accounted for by topsoil K adjusted for subsoil texture. However, alluvial soils are unpredictable - in lighter subsoils subsoil K can be parity or higher than topsoil whereas on heavy subsoils can be lower than found than on other clays, but affected positively by organic matter content unlike on geological clays where organic matter is associated with a marginal *decrease* in subsoil K.

If subsoil texture is unknown predictability is worse as illustrated in Table 9. Farmers may know their topsoil texture but have little awareness of the upper subsoil: in 33% of the instances the upper subsoil was heavier than the topsoil and in 18% the subsoil was lighter (sandier).

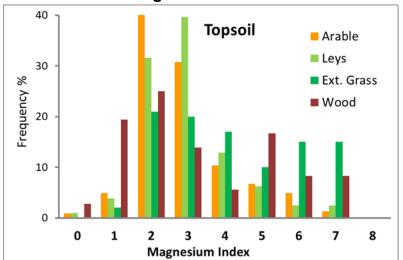
oundy an	u Light	-	osoil (ar	abiej		Sandy an	u Ligin	ivan iv		y5)	
		Subsoil K						Subsoil K			
Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/3	Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/3
Index 0	4	1				Index 0	25	4	1		
Index 1-	8	11	1			Index 1-	17	11	4		
Index 1+	1	20	6	1	1	Index 1+	2	1	3	1	1
Index 2-(L)		8	10	5		Index 2-(L)	1	2	2	1	
Index 2-(H)		4	5	1		Index 2-(H)	1	1	1	3	
Index 2+	1	2	2	8	5	Index 2+	1	2	3	5	1
Index 3			2	4	5	Index 3				2	2
Medium topsoil (arable)			Medium	topsoil (leys)						
		Subsoil K						Subsoil K			
Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/3	Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/
Index 0	6	1		1		Index 0	31	6			
Index 1-	8	12				Index 1-	16	16	2		
Index 1+	2	9	13	1		Index 1+	2	7	9	2	
Index 2-(L)		6	12	6	1	Index 2-(L)	1	5	4	1	1
Index 2-(H)		1	8	11	1	Index 2-(H)		3	3	7	1
Index 2+	1	5	11	4		Index 2+	1	1	4	3	2
Index 3			1	2	8	Index 3		1	3	4	5
Heavy loa	am or cla	ay topso	oil (arab	le)		Heavy loa	am or cla	ay topso	oil (leys)		
		Subsoil K						Subsoil K			
Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/3	Topsoil K	Index 0	Index 1-	Index 1+	Index 2-	Index 2+/
Index 0	1	1				Index 0	1				
Index 1-		2				Index 1-	5	5	1		
Index 1+		1	2	3		Index 1+	2	3	2	1	
Index 2-(L)			1	5		Index 2-(L)		2	3	2	
Index 2-(H)		2	4	4		Index 2-(H)	1	1	1	2	
Index 2+		2	2	3		Index 2+		3		3	1
Index 3		1	1	2	5	Index 3				2	2

 Table 9: Matrix of Topsoil and Subsoil K (number of data in each category)

In table 9 grey indicates adequacy - topsoil (2-) and upper subsoil (1+ or more). Orange indicates adequate topsoil (2- or 1+) but inadequate subsoil K, 1- or 0 (pink). Boxes with only 1 data are not shaded.

- At (topsoil) K index 0 (0-60 mg/l) subsoil is also index 0 but rare on heavier soils.
- At K index 1- (61-90 mg/l) subsoil is likely index 0 or 1- and inadequate.
- At topsoil index 1+ (90-120 mg/l) subsoil is likely index 1- on sandy/light loam soils but 1+ on medium and heavy soils, implying some adequacy but see note below*. However under grassland subsoil is unpredictable ranging from 0 to 2-
- At topsoil index 2- (121-180 mg/l, target) subsoil is likely index 1+ on sandy to medium soils but with range 1- to 2-. In the lower case this might pose deficiency if

the topsoil dries out. On heavier soils subsoil is usually 1+ to 2- implying sufficiency* however 1- was found in a fifth of cases.


- In summary the probably of finding a subsoil K of 1- or less (<90 mg/l) in this region Topsoil index 1+ 65% of light soils, 44% medium to heavy. Topsoil index 2- 38% of light soils, 21% medium to heavy Topsoil index 2+ 20% of all textures Topsoil index 3 0%
- On heavier soils, potash levels in these Triassic heavier soils are better * than Carboniferous clays where the subsoils were usually index 0/1 (see NE report).

* We cannot be sure that the better K level in heavier subsoils is as effective as it seems because K depletion experiments show that a basal amount of the K extracted by conventional ammonium nitrate method is not actually plant available. This 'dead' K increases with clay content (and possibly mineralogy). In this data intercepts (at theoretical 0 mg/l topsoil K) increase in order light loams subsoils (0) < medium (20 mg/l) < clay (45 mg/l). So perhaps the first 0-50 mg K/l measured in heavier soils is not useful to the plant. *More research is needed on this.*

- Maintaining soils above target at index 2+ (180-240 mg/l) is likely to maintain subsoil at 1+ to 2- (arable) or 1+ (grassland). So subsoil K should be adequate in seasons where the topsoil dries out.
- Topsoil levels of index 3 correspond to subsoil K of at least index 2- and so should be safe to run-down though it may be inferred that those cases with proportionately less subsoil K may run-down faster than those with higher subsoil K. At levels above (and at) target index it is implicit that some K is being leached from topsoil on medium soils and a substantial amount on lighter soils.
- Measurement of subsoil K should be routinely made in potash depletion (or build) experiments. It is also advisable on disturbed soils or soils on layered alluvium or those with stony subsoils and where there is known to be a significant textural contrast e.g. heavy loam topsoil over light loam or sandy subsoil.

6. Magnesium

Region B: Central and North West Midlands

6.1 Overview of magnesium levels

Topsoil

Arable land: Mg index 2 is considered adequate for nearly all crops, with index 3 for some specialised fruit and vegetable crops. Only 6% of samples were below target, most were index 2 or 3 with a median of 112 mg/ I. Relatively few (13%) were Index 5 (very high) or Index 6 (excessive)

Grassland leys; values were slightly higher than arable samples (median 122 mg/ l) with 5% below target and 11% at index 5 – 7. On extensive grassland values were considerably higher - median index 4 (219 mg/l) and 40% were Index 5 to 7.

Amenity grass tended to lower Mg perhaps indicative of absence of returns in animal excreta or manures. On woodland median Mg was 123 mg/l but values were widely spread with 22% deficient and 33% index 5 to 8.

The PAAG (2019) national survey found 12% of all samples had index 5 or higher.

Table To. Region B : Typical Son Magnesium levels (mg/)						
	Topsoil		Upper S	Subsoil		
	median	mean	median	mean		
Arable	113 (3)	144	102 (3)	113		
Leys	120 (3)	156	110 (3)	152		
Extensive Grass	210 (4)	288	243 (4)	361		
Amenity Grass	95 (2)	133	60 (2)	126		
Wood	133 (3)	199	126 (3)	224		

Table 10. Region B : Typical Soil Magnesium levels (mg/l)

Subsoil

Arable land: average Mg in subsoil similar to topsoil (Table 10) though with greater spread (14% index 0/1 and 19% Index 5-7).

Figure 15a. Region B: Available Magnesium in Topsoil (balanced data)

Grassland leys; again similar average values to topsoil but with more variation 14% below target and 16% very high (one sample was index 8).

Under extensive grassland subsoil Mg was higher than topsoil with 50% at index 5-8. On woodland: as in the topsoil the subsoil gave a large range of values from index 0-7.

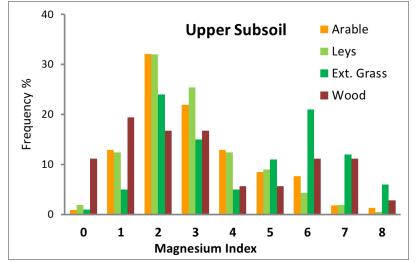


Figure 15b. Region B: Available Magnesium in Subsoil (balanced data)

6.2 Influence of texture on magnesium levels in topsoil

In Tables 11a-e the topsoil Mg data is partitioned according to topsoil hand-texture class.

Across all land uses there is a trend of Mg level increasing with clay content category.

Light loam textures have marginally higher Mg than sand topsoils, but medium topsoils are about 50 mg/l (approx.one index) higher, heavy loams a further 50 mg/l and for clay topsoil the index typically shoots up to 6 or 7.

Arable sites deficient in Mg (index 1 or 0) were few - 14 instances were light loam topsoil, 5 medium and none were heavier soils; on leys 3 were sandy, 10 light loams, 5 medium and no heavier topsoils. On amenity grass all cases of low Mg cases were on light loams.

 Table 11a
 Region B: Arable data Topsoil Texture and Magnesium

 Averages of all data. Index in parenthesis.

Class	Textures	Mean	Median	n
		mg Mg/ I	mg Mg/ I	
0	LS,S	80	80 (2)	10
1	SL, fSL, SZL	89	80 (2)	107
2	SCL, mCL (mZCL)	160	143 (3)	131
3	hCL, hZCL	222	155 (3)	36
4	ZC, C	476	541 (6)	5

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL= heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay. Class 4 >> 3 > 2 > 1, 0.

Much higher Mg on extensive grass than leys or arable occurs across the texture range and the medians increase from index 3 for lighter loams to index 5 for heavier loams. We

conjecture this high Mg is caused by lack of offtake (few or no cuts), predominance of grazing (Mg returned in excreta) and sometimes wetness (lack of leaching). Alluvium is evaluated later.

Under woodland the differences due to texture are exacerbated.

Class	Textures	Mean	Median	n
		mg Mg/ I	mg Mg/ I	
0	LS,S	57	56 (2)	8
1	SL, fSL, SZL	116	98 (2)	91
2	SCL, mCL (mZCL)	155	120 (3)	141
3	hCL, hZCL	236	167 (3)	35
4	ZC, C	524	589 (6)	4

 Table 11b
 Region B: Grass Leys -Topsoil Texture and Magnesium

Clear trend: Class $4 \gg 3 > 2 > 1 > 0$

Table 11c Region B: Extensive Grass Topsoil Texture and Magnesium

Class	Textures	Mean mg Mg/ I	Median mg Mg/ I	n
0	LS.S	[178]	[178]	2
1	SL, fSL, SZL	185	133 (3)	51
2	SCL, mCL (mZCL)	280	221 (4)	62
3	hCL, hZCL	423	284 (5)	34
4	ZC, C	638	656 (7)	4

Clear trend: Class 4 >> 3 > 2 >> 1. Much higher Mg than for grass leys of same texture.

Table 11d Region B: Amenity Grass Topsoil Texture and Magnesium

.Class	Textures	Mean mg Mg/ I	Median mg Mg/ I	n
1	SL, fSL, SZL	78	71 (2)	11
2	SCL, mCL (mZCL)	146	124 (3)	9
3	hCL, hZCL	635	[635]	1

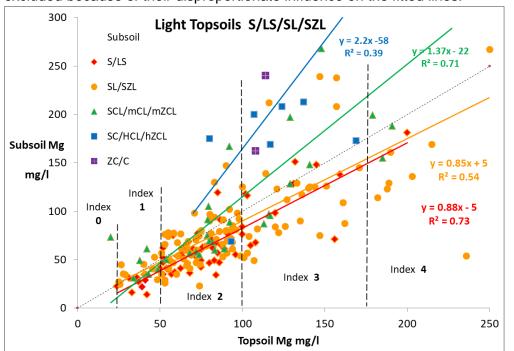

Clear trend Class 2 > 1 and less than leys or arable land of same texture class.

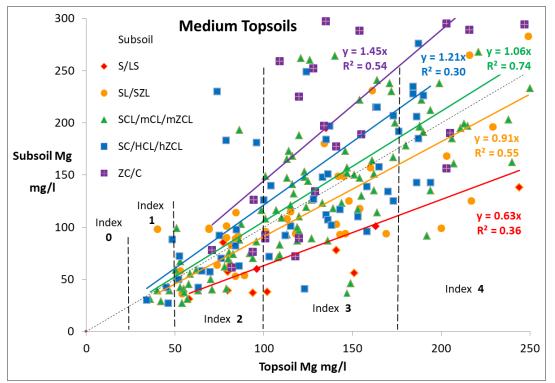
Table 11e Region B: Woodland Topsoil Texture and Magnesium

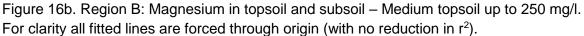
Class	Textures	Mean	Median	n
		mg Mg/ I	mg Mg/ I	
0	LS,S	78	65 (2)	8
1	SL, fSL, SZL	116	69 (2)	16
2	SCL, mCL (mZCL)	250	222 (4)	13
3	hCL, hZCL	309	297 (5)	9
4	ZC, C	793	793 (7)	2
Р	Peaty loam	95	95 (2)	2

Clear trend Class 4 >> 3 > 2 >> 1, 0. Compared to arable land on lighter woodland soils Mg levels are marginally lower and on medium and heavy land is much higher

6.3 Influence of texture on magnesium levels in subsoil

For regression analysis arable and leys were combined; samples >250 mg/l Mg were excluded because of their disproportionate influence on the fitted lines.


Figure 16a. Region B: Magnesium in topsoil and subsoil – Light loam topsoil. 5 samples are not shown (Mg 251 to 330 mg/l).


Under lighter topsoil the subsoil Mg was slightly less than topsoil (about 0.86x) for light loam or sandy subsoils. Index 1 in topsoil corresponds to index 1 in subsoil except where sandy it it is likely to be index 0 (reflecting accelerated leaching).

At medium subsoil texture subsoil Mg was about 1.2x topsoil ie *greater* and much higher in heavy loam subsoil - indicative of resistance to leaching or more release from clay.

Unsurprisingly, when subsoil and topsoil are both medium textured (Figure 16b) Mg levels are similar (1.06x) however if subsoil is light loam subsoil Mg is less about 0.9 or 0.65 (35% less) if sandy texture. At topsoil index 2 the subsoil could be index 1 but never 0.

Heavier loam subsoils tend to 1.2x higher Mg and clays 1.45x.

Under heavier topsoil (Figure 16c), the subsoil Mg tends to be higher than topsoil if medium or heavy subsoil. The data shows a constant increase (of about 40 mg/l) rather than a proportionate increase in subsoil Mg but the correlation is quite poor so inclusive.

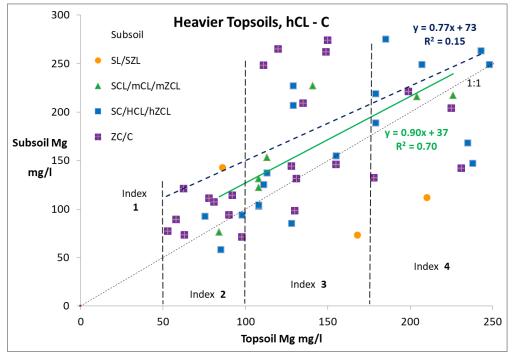


Figure 16c. Region B: Magnesium in topsoil and subsoil – heavier topsoil up to 250 mg/l.

Extensive grassland data is summarised on Figure 17 extended up to 350 mg/l Mg in topsoil. There are no examples of low index. All topsoil textures are combined. Data for heavier and clay subsoils has been forced through origin with no loss of r^2 .

It shows the same pattern as arable-ley data in Figure 16a-c: subsoil Mg is parity with topsoil where subsoil is medium textured, below parity where light loamy and much lower where sandy. On heavy loam subsoil the subsoil Mg is higher than topsoil (1.25x) and >1.5x in clay subsoils though with considerable variation.

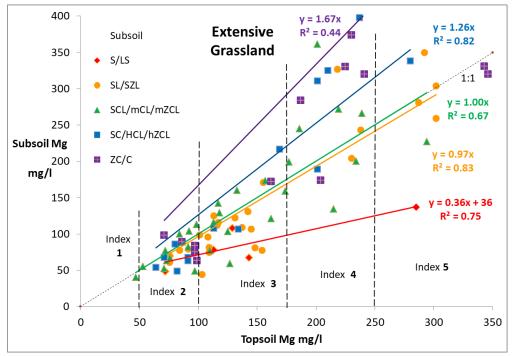


Figure 17. Region B: Magnesium in topsoil and subsoil – Extensive Grassland

Figures 16-17 are simplified (intercept forced through zero) to produce Table 12.

Table 12: Prediction of subsoil magnesium where topsoil ≤ 250 mg/l Mg (Index 0-4)
Subsoil Mg = Topsoil Mg x coefficient in table

	Topsoil Texture	Subsoil Texture				
Class	Texture	0	1	2	3	4
0	LS,S	0.80	0.90	1.20	1.45	
1	SL,SZL	0.80	0.90	1.20	1.45	1.45
2	SCL, mCL ,mZCL	0.65	0.90	1.05	1.25	1.45
3	SC, hCL, hZCL		0.70	1.00	1.15	1.25
4	ZC,C			1.00	1.10	1.20

S = sand, LS = loamy sand, SL = sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL = heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

When the same approach was applied to Carboniferous soils (NE region) similar coefficients were derived of 0.8,1.0,1.0,1.17 and 1.29 respectively for the five subsoil classes (any topsoil texture).

The main area of agronomic interest is where the coefficient is less than 1 due to a sandy or light subsoil, where an adequate topsoil Mg (lower end of index 2) could overlie a subsoil that is index 1 (or index 1 overlying index 0). In other situations the subsoil Mg is equal to or higher than the topsoil.

6.4 Relationship of magnesium to parent material

There is no obvious relationship of Mg to pH in topsoil (Figure 18) nor in subsoil.

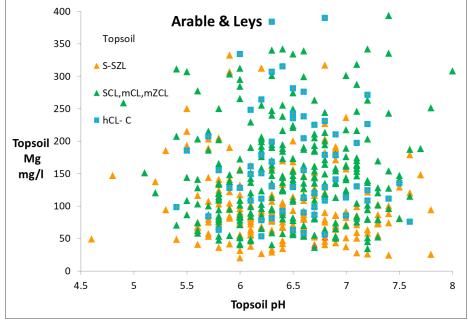


Figure 18. Region B: Magnesium versus pH in topsoil and subsoil

To investigate the relationship of soil Mg levels with geology, the data was isolated which had heavy loam or clay subsoils and shown in Table 13. Woodland was excluded. Total data in each category is shown (n) with extensive grass in parentheses. Medians are cited and 25-75% percentiles.

.Geological Grouping	Тор	Sub	soil Mg	Subsoil pH		Subsoil K		n
(BGS maps)	mg/l	mg/l	25-75%		25-75%	mg/l	K:Mg	
Alluvium over Bransombe Mudston	418	741	381-1201	6.5	6.4-6.8	52	0.07	19(17)
Dolomitic Siltstone*(Sidmouth/Gun)	441	572	457-785	7.9	7.6-8.1	126	0.22	10 (8)
Alluvium over Gunthorpe Mudstone	452	530	373-615	6.9	6.3-7.2	99	0.19	8 (4)
Alluvium over Sidmouth Mudstone	436	530	253-866	6.5	6.0-6.7	72	0.14	8 (4)
Branscombe Mudstone	172	515	268-886	6.5	6.3-6.8	71	0.14	10 (1)
Alluvium over Mercia Mudstone	491	481	363-604	6.9	6.7-7.0	63	0.13	8 (7)
River Terrace over Mudstones	307	445	372-396	6.8	6.0-7.0	104	0.23	9 (2)
Mercia Mudstone & Halite	270	312	156-430	7.0	6.6-7.4	121	0.39	41(2)
Tarporley Siltstone	243	276	270-284	7.1	6.9-7.7	106	0.38	3 (0)
Gunthorpe Mudstone	170	262	113-371	6.6	6.3-7.2	123	0.47	8 (0)
Sidmouth Mudstone	139	242	227-259	7.2	6.8-7.4	125	0.52	10 (0)
Glacial Drift over Mercia Mudstone	151	223	208-331	6.8	6.5-7.1	131	0.59	6 (0)
Glacial Drift over Mudstone & Halite	158	217	178-318	7.0	6.2-7.3	77	0.35	15 (2)
Mercia Mudstone	174	196	117-282	7.1	6.7-7.3	99	0.51	10 (2)

Glacial Drift over Sidmouth Mudstn	154	192	146-279	7.0	6.5-7.3	76	0.40	26 (2)
Glacial Drift over Halesowen &								
Chester formations	189	145	130-194	6.8	6.6-6.9	63	0.43	12 (0)
Oadby Glacial Till (not red)	98	137	102-145	6.2	6.2-6.7	75	0.55	7 (0)
Glacial Drift over Salop Formations	128	104	89-107	6.9	6.3-7.0	71	0.68	5 (0)
Ashow Mudstone & Sandstone	91	98	56-160	6.4	6.0-6.8	74	0.76	4 (0)
Salop Mudstone	100	91	73-111	6.2	5.9-7.0	87	0.96	18 (1)
Alluvium over Wildmoor Sandstone	86	72	64-88	6.6	6.1-6.8	42	0.58	10 10)

* one sample in Arden Sandstone (a siltstone noted for its green calcareous layers) had 689 and 1190 mg/l Mg though pH did not exceed 7.0.

Table 13 indicates significant ranges within each geological class, so exact statistical analysis is difficult (mean values are substantially greater than medians cited above). However, reasonable conclusions are as follows:-

a) the highest subsoil Mg levels occur in Alluvium over red Mudstone and on soils directly formed on *Branscombe Mudstone* or Dolomitic Siltstones. These are index 6 or 7 in subsoil. A disproportionate number of the alluvial soils are on extensive grassland, and this may have some influence as mentioned previously.

b) heavier subsoils formed on *Gunthorpe, Sidmouth and Wilkersley* Mudstones or 'Mudstone with halite', are typically Mg index 5.

c) heavier subsoils in Glacial Till or fluvio-glacial material on the above mudstones are slightly lower (index 4), as might be expected due to dilution with "foreign" material.

d) the lowest subsoil magnesium (index 3 or 2) occurs on red mudstone+sandstone formations; also alluvium over Sandstone where (despite heavy subsoil) Mg is not high

Average topsoil Mg levels are somewhat less than subsoil Mg because the topsoils are sandier/loamier than the subsoil. Note that only heavier subsoils are included in Table 13.

6.5 Problems of high magnesium in red soils of the Midlands

1) RB209 states that high soil Mg can antagonise uptake of potassium by crops. This is often noted by agronomists. Criteria are not precisely known but a minimum K:Mg ratio of 0.5 (mg/l:mg/l) is often cited.

2) There is some evidence that an undue proportion of magnesium on the exchange complex can make heavier soils 'harder to work', possibly because Mg destabilises the organic colloids bound to the clay.

Median potassium values in subsoil are also shown in Table 13. K tends to be slightly higher on most red mudstones than in soils influenced by Drift, nevertheless the mg/l Mg typically exceeds the mg/l K by 2-3 times and by over 4 times in the very high Mg soils.

Over all the arable data median K:Mg ratio in topsoil was 1.3 and in 16% of cases ratio was 0.5 or lower. For grass leys: median K:Mg was less than arable, 0.8, and 24% of cases had ratio <0.5 of which 5% were <0.25 (i.e. mg/l Mg was greater than 4x the mg/l K).

Compared to topsoil, subsoil potassium tends to be lower while Mg is higher if heavier textured. The arable subsoil median K:Mg ratio was 0.8 and 29% had ratio <0.5 (9% were < 0.25). Under leys median was 0.7 with 32% <0.5 (9% <0.25).

Therefore issue of potential magnesium: potassium antagonism applies to a significant proportion of the Triassic soils reviewed here as well as the Carboniferous soils in NE report (these had an even lower K:Mg in topsoil (median 0.55).

On the data for Triassic soils shows K:Mg ratio is commonly less than one, but it is kept above 0.5 if target K index (2-) is attained and Mg index does not exceed 4. At Mg index 5 the ratio is above 0.5 if the topsoil K is kept at index 2+. More agronomic research is needed to establish the ratio in soil solution below which roots are impeded in taking up potassium and whether this relates simply to the K:Mg ratio reported from soil analysis.

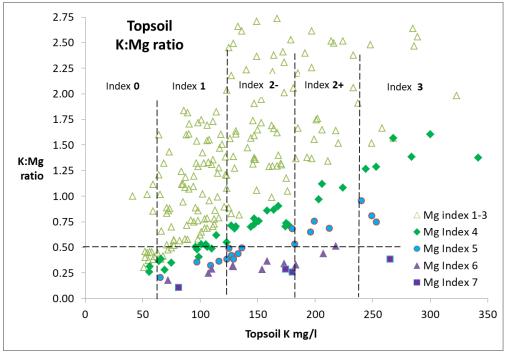
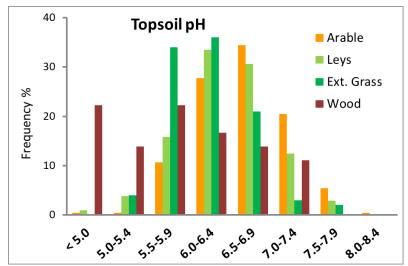



Figure 19: Region B, Arable data: potassium levels and K:Mg ratio (mg:mg).

7. pH

Region B: Central and North West Midlands

7.1 Overview of pH levels

For arable land 6.5-6.9 is considered optimal (RB209). 34% of samples were at target pH (modal) and 28% at pH 6-6.4 which is satisfactory for some crops but not all e.g. barley and legumes. Only 12% were acid (< pH 6), a lower proportion than the PAAG (2019) data (19%), with almost no samples < pH 5.5. Median pH was 6.6. 20% of samples were very slightly alkaline (7-7.4) and 6% too alkaline (pH 7.5+).

pH 6.0-6.4 is optimal for grassland. Only 21% of leys were below pH 6.0 and 38% of extensive grassland but only 4% of the latter was below 5.5 (which would warrant liming). This is a much lower proportion than 19% reported in PAAG (2019), however grass is sampled at shallower depth (7.5cm or 15cm) than the 20cm+ here, and it is quite likely that pH where the most roots reside was somewhat lower pH than Figure 20a implies. 4% of grassland was pH 7.5+.

pHs tended to be slightly lower in *amenity* grassland and woodland, the latter showing wide variation with 25% of samples extremely acid (pH < 5.0).

	Тор	soil	Upper	Subsoil	n
	median	10-90%	median	10-90%	
Arable	6.6	5.8 - 7.3	6.8	6.1 - 7.4	225
Leys	6.4	5.7 - 7.1	6.7	5.9 - 7.4	209
Extensive Grass	6.1	5.6 - 6.7	6.5	5.8 - 7.2	100
Amenity Grass	5.9	5.3 - 6.1	6.2	5.6 - 7.0	15
Wood	5.9	4.4 - 7.0	6.0	4.6 - 7.0	36

Subsoil pH tends to be higher than topsoil though not by a large amount. In the arable data 17% of subsoils were marginally acid and 8% below pH 6.0 of which only 1.3% were <5.5. Under grass leys 11% of subsoils were below pH 6.0 of which 3% were below 5.5.

Figure 20a. Region B: pH in Topsoil (balanced data)

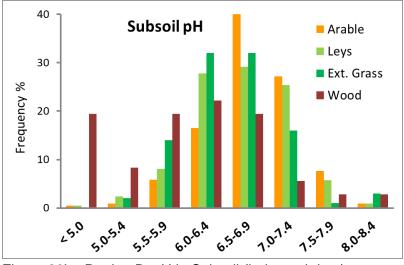


Figure 20b. Region B: pH in Subsoil (balanced data)

7.2 Factors influencing topsoil pH

Regression analysis of all the data shows that topsoil pH is unaffected by sampling method on arable data while there is a small effect on grassland (0.07 units less by corer, P = 0.17). This might be expected in that the latter method always includes surface soil whereas auger method takes a typical sample from auger (topsoil can be deeper than 20cm).

Topsoil pH shows a negative relationship with organic matter with a drop of 0.05 pH with each % OM up to 10% but this explains a minor part of the total variance (Appendix 11.9).

There is a trend of both topsoil and subsoil pH increasing with texture category (increasing clay content) but the differences are very small as shown in Table 15, and there is wide variation, half the samples lying outside the ranges shown.

Texture of horizon	Тор	soil	Upper	Subsoil
	median	25-75%	median	25-75%
Sandy, light loam	6.4	6.0 - 6.8	6.6	6.2 - 6.9
Medium	6.5	6.1 - 6.8	6.8	6.4 - 7.1
Heavy loam, clay	6.6	6.2 - 6.9	6.9	6.7 - 7.4

Table 15. Region B : Texture and pl	I (all data, arable and leys, $n = 624$)
-------------------------------------	--

7.3 Factors influencing subsoil pH

Subsoil is expected to be higher pH than topsoil because leaching occurs of calcium, magnesium and bicarbonate from topsoil to subsoil. The dominant influence on subsoil pH is topsoil pH with a smaller effect of texture

As for magnesium, all arable and ley data was combined and subdivided firstly by topsoil texture category and secondarily by subsoil texture, displayed in the Figures below.

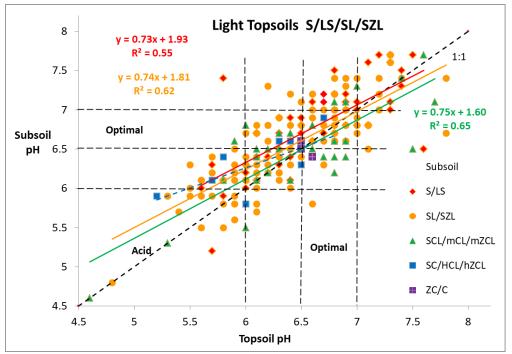


Figure 21a. Region B: pH in topsoil and subsoil - Light loam topsoil (arable and leys)

For **lighter topsoil** data for all subsoil textures fits lines of r^2 about 0.6. As topsoil pH declines below pH 7.0 the subsoil tends to a higher pH than topsoil.

When the topsoil is optimal pH (6.5-6.9) the subsoil is very likely optimal or slightly alkaline.

At suboptimal pH (6.0-6.4) the subsoil is similar or optimal and very unlikely to be below pH 6.0. When topsoil is acid (pH < 6.0), subsoil is suboptimal or acid, and can be more acid than topsoil in some instances.

For **medium topsoil** (Figure 21b), at pH 6.5 the different subsoil textures fit similar lines with subsoil pH slightly higher than topsoil. At pH 7.0 heavier subsoils are likely to be more alkaline than medium or lighter soils.

When the topsoil is optimal pH (6.5-6.9) the subsoil was rarely less than 6.5.

At suboptimal pH (6.0-6.4) the subsoil pH varies from similar to slightly alkaline. When topsoil is acid (pH < 6.0), subsoil pH is rarely lower and typically 0.1 to 0.6 units higher.

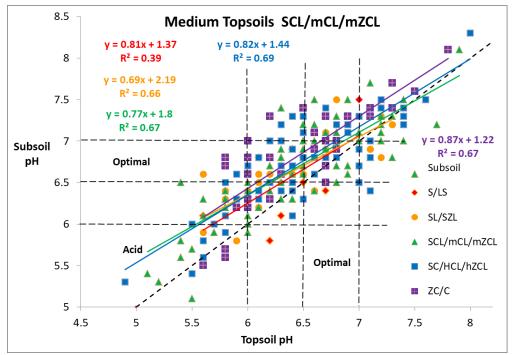


Figure 22b. Region B: pH in topsoil and subsoil - Medium topsoil (arable and leys)

For **heavier topsoil** (Figure 21c), the different subsoil textures fit to lines that are not obviously different. Subsoil pH tends to be higher than topsoil though the difference diminishes above pH 7.0.

When the topsoil is optimal pH (6.5-6.9) the subsoil was less than 6.5 in only 3 instances. There were few cases where topsoil is acid (pH < 6.0).

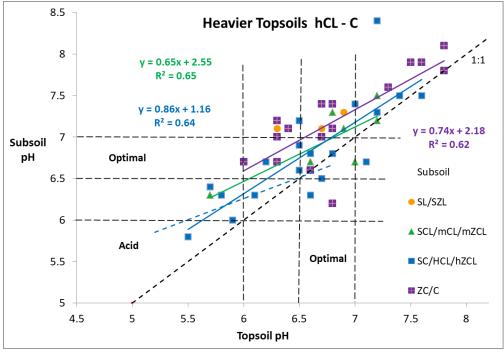


Figure 22c. Region B: pH in topsoil and subsoil – Heavier topsoil (arable and leys)

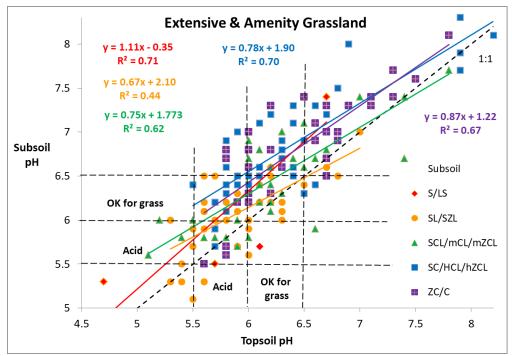


Figure 23a. Region B: pH in topsoil and subsoil – Extensive and Amenity Grassland

Extensive and Amenity Grass ('permanent grass') data is in Figure 23 for all topsoil textures. As in Figure 22a-c subsoil pH tends to be slightly above topsoil pH over most of the range.

Assuming that pH 6-6.4 is acceptable for grass then if topsoil is OK the subsoil is also. Where the topsoil is below 6.0 there is a range of possibility in subsoil from < 5.5 to above pH 6.5. Below 5.5 in topsoil, the subsoil is typically 0.5 higher but can be parity

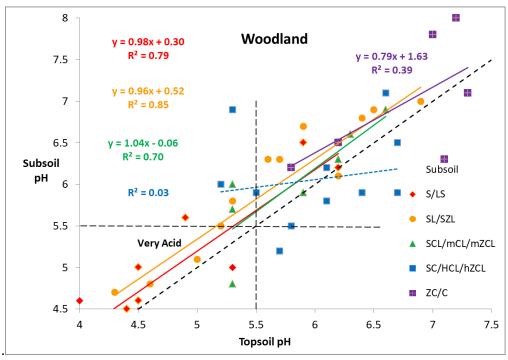


Figure 23b. Region B: pH in topsoil and subsoil - Woodland

Data for woodland (Figure 23b) shows for sandy to medium soils a parallel linear correlation of subsoil pH about 0.3 higher than subsoil pH from extremely acid to neutral. For heavier soils data is scattered, but with no instances of topsoil or subsoil pH below 5.5.

7.4 Prediction of subsoil pH

In the above Figures it is evident that soil texture has a less significant influence on pH than on phosphorus, potassium or magnesium levels.

Table 15 indicates that for arable/ley fields the pH tends to be marginally higher on heavier topsoil compared to lighter loams but only a 0.2 difference. On sandy soils about 25% were acid (below 6.0), with the % reducing slightly on medium and heavy soils.

To fit regression equations all data was included apart from woodland. Samples above topsoil pH 7.0 were isolated to improve precision over the agronomically significant range.

Sandy to medium topsoils and heavy loam / clay topsoils were analysed separately.

For sandy to medium loams topsoil pH was by far the most important influence on subsoil pH, explaining over half the variance ($r^2 = 0.56$).

- Sampling method had a significant but small influence, the corer method giving pH 0.06 lower than auger method.
- Topsoil texture had a significant influence increasing the pH 0.2 between sandy and medium topsoils. Subsoil texture had a smaller influence (0.05 per texture class).
- Subsoil OM% (capped at 6%) had a negative influence on pH with a decrease of 0.2 units between 1 and 4.5% OM. This may reflect more topsoil-derived material in the subsoil which is more acid than the in situ subsoil.

For heavy loam and clay topsoils, topsoil pH was again dominant though there was greater variance ($r^2 = 0.45$). Sampling method or subsoil OM% had no influence.

- Heavy loam versus clay *topsoil* increased subsoil pH by 0.08 though of dubious significance.
- Heavy loam versus clay subsoil increased subsoil pH by 0.07 (significant).

The regression equations in Appendix 11.9 are summarised below. The use of topsoil texture rather than subsoil texture gives better correlation here (and easier to use).

Sand topsoil Subsoil pH = Topsoil pH x 0.82 + 1.23	$r^2 = 0.58$
Light loam topsoil Subsoil pH = Topsoil pH x $0.82 + 1.33$	$r^2 = 0.58$
Medium topsoil Subsoil pH = Topsoil pH x $0.82 + 1.43$	$r^2 = 0.58$
Heavy loam topsoil Subsoil pH = Topsoil pH x $0.84 + 1.39$	$r^2 = 0.45$
Clay topsoil	

Subsoil pH = Topsoil pH x 0.84 + 1.47

For topsoil pH of 7.1+ equations are Topsoil pH x 0.75 + 1.6, 1.75 or 1.9 $r^2 = 0.20$ and for heavier textures Topsoil pH x 0.85 + 1.30 or 1.45 $r^2 = 0.30$

Although of poor r^2 they extend smoothly the equations above and are used in table 16.

Woodland all textures (up to pH 7.0) Subsoil pH = Topsoil pH x 0.89 + 0.79

 $r^2 = 0.73$

 $r^2 = 0.45$

Table 16: predictions of subsoil pH from topsoil pH and topsoil texture

	Topsoil Texture		at Topsoil pH				
Class	Texture	5.0	5.5	6.0	6.5	7.0	7.5
0	S, LS	5.4	5.9	6.2	6.6	7.0	7.2
1	SL, fSL, SZL, ZL	5.5	6.0	6.3	6.7	7.1	7.4
2	SCL, mCL, mZCL		6.1	6.4	6.8	7.2	7.5
3	hCL, hZCL		6.0	6.4	6.8	7.2	7.6
4	C, ZC		6.1	6.5	6.9	7.3	7.8
any	Woodland	5.2	5.7	6.1	6.6	7.0	

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, ZL = silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL= heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

When is subsoil acidity likely?

- a) At topsoil pH 6.0 subsoil pH is about 0.2, 0.4 or 0.5 units higher on sandy, medium and clay soils respectively. When topsoil is pH 5.5 subsoil is likely to be 5.9-6.1 on all textures (though such acidity was rare on heavier soils).
- b) At topsoil pH 7.0 subsoil pH is likely to be similar on sandy soils and 0.3 higher on clay soils.
- c) Where the topsoil is alkaline, medium or heavy subsoils are likely to be significantly more alkaline. In some instances this is due to dolomitic layers in the parent material siltstone or clay (see previous section).
- d) The assumption 'take care of the topsoil pH the subsoil will take care of itself' is examined in Table 17. It indicates 85% probability of subsoil pH equalling or exceeding the topsoil pH and only a 5% probability that the subsoil is at least 0.3 *lower* than the topsoil (3% for samples of topsoil pH 6.0 or less).

Table 17 : Subsoil pH minus Topsoil pH (all data)

pH difference	Topsoil ≤ 6.7	Topsoil ≤ 6.0	n	n
> +1.0	1.5 %	1.0 %	8	3
+0.6 to +1.0	20.8%	21.9 %	111	46
+0.3 to +0.5	35.6 %	40.0 %	190	84
0.0 to +0.2	27.9 %	23.8 %	149	50
-0.2 to 0.0	9.4 %	9.0 %	50	19
-0.3 to -0.5	4.1 %	3.3 %	22	7
-0.6 to -1.0	0.7 %		4	

The 26 cases where the subsoil pH was at least 0.3 less than the topsoil and below 6.7 were examined more closely :

- 19 were grass, only 7 were arable (39% of all data was arable).
- in 6 cases the topsoil (and subsoil) were high in organic matter.
- only 2 cases were on heavy loam or clay topsoil.
- In 18 cases topsoil texture was loamy sand or sandy loam (17 cases of subsoil texture)
- 19 cases had slightly or moderately stony subsoils and in 9 cases the subsoil was stonier than topsoil. The predominant geology was Sand & Gravel (13) or Sandstone (4).

It is possible that in some light/stony subsoils acidification rate could exceed acidification of topsoil. However it is possible the field had been limed within past 2 years with a delay in leaching of bicarbonates to maintain or raise the subsoil pH.

Generally speaking, this data indicates that if topsoil pH is greater than 6.0 there is no need to measure subsoil pH *apart from light loamy or sandy soils or stony subsoils or organic soils, where the fields have come out of longer term grass or been under minimal cultivation.* In such cases subsoil pH is worth checking.

If topsoil pH is 5.5, subsoil pH is probably higher but probably less than 6.0. So for arable or horticultural crops this raises the question of whether subsoil pH should be also checked, especially on lighter/stonier soils.

At topsoil pH below 5.5 the subsoil is very likely to be acid but with considerable uncertainty in degree of acidity, and therefore *subsoil pH should always be checked*.

7.5 Alkalinity in parent material?

In whole data 52 cases (6.5%) had subsoil pH >7.5, though only 8 registered as calcareous by dilute HCl test in the field. In some cases this failed due to slow reaction of dolomitised material. 10 cases were designated by BGS as Sand & Gravel and 6 as Sandstones (Mg index 3 or less) but most alkaline subsoils (70%) were spread evenly across the various Mudstones though those classed as 'Dolomitic' or 'Siltstones' were always alkaline, sometimes due to green 'skerries' in the parent material.

Alkaline subsoils were most likely in Worcester Association (431) (50%, 6 samples), followed by 11 samples in Whimple 3 Ass. (572f, loam over red mudstone), 7 + 7 in Clifton and Salop Associations (711n/m, Till), 8 in the light loamy groundwater-affected associations (Everingham and Wigton Moor Ass., 821b/831c) and (surprisingly) 7 cases in Brignorth Ass. association (551a, sandy over sandstone).

Clearly the extent of calcareous soils on Triassic-derived strata cannot be predicted from SSEW or BGS maps. The topsoil is usually of lower pH (due to inclusion of Drift or decalcification).

7.6 Agronomic conclusion: pH levels in red soils of the Midlands

In this region of central and north west Midlands, 34% of the arable land was at target pH, 28% marginal pH (6-6.4) and only 12% acid (< pH 6) with almost no samples <pH 5.5.

For grassland 21% of better quality leys, 38% of the extensive grassland and 50% of amenity grass was below optimum (pH 6.0+). However, of the extensive grassland only 4% was below pH 5.5. 60% of woodland was < pH 6.0 or which 20% was below pH 5.

The data implies that most arable and intensive grassland farmers in the region are regulating pH by testing and liming, however control could be improved to reduce the number of samples below optimum.

Note that normally grass is sampled at shallower depth (7.5cm or 15cm) than the 20cm+ here, and so pH may be lower in main active layer of grassland, especially on fields which are not (rotationally) ploughed..

Topsoil pH tends to decrease in sequence arable > ley > extensive > amenity but not by a large amount (medians 6.6, 6.4, 6.1 and 5.9 respectively).

Topsoil pH is slightly influenced by topsoil texture with a median increase of 0.2 units from sandy to clay soils.

Topsoil pH decreases with topsoil OM% though it explains a poor amount of the variance.

Subsoil pH is strongly related to topsoil pH with a lesser influence of topsoil or subsoil texture. The regressions predict that at topsoil pH 6.0 subsoil pH is most likely to be 6.2 on a sandy soil increasing to 6.5 on a clay; at topsoil pH 5.5 subsoil is likely to be 5.9 and 6.1 respectively. However there is considerable uncertainty and in some cases subsoil is more acid than the topsoil.

The general rule holds that 'if topsoil pH is maintained adequate the subsoil will take care of itself.' However cases where subsoil is below 6 may constitute a risk for arable crops, and the following instances pH of the subsoil (to 50cm) is worth testing :-.

- d) Topsoil pH < 6.4. Light loamy or sandy soils or stony subsoils or organic soils, where the fields have come out of longer term grass or been under minimal cultivation.
- e) Topsoil pH < 6.0. Light loamy, sandy or stony subsoils, organic soils and all soils where cropping is sensitive to acidity e.g. barley, beans, sugar beet.
- f) Topsoil pH < 5.5 all cases including intensive grassland.

If subsoil pH is below 6.0, the appropriate lime requirement can be added by over-liming the topsoil (to above 7) to accelerate leaching of bicarbonate, or "ploughing under" the extra lime or applying more lime the following autumn.

Neutral and alkaline soils: as topsoil pH approaches 7.0, the subsoil tends to parity for lighter soils and up to 0.5 higher on clays, though the latter may depends on the mineralogy. About 5% of topsoils were pH 7.5 or more and 6.5% of subsoils. Such moderately alkaline subsoils could be found within all the Triassic Mudstones and Siltstones, Glacial Till and (rarely) sandstones. Alkalinity cannot be predicted reliably from soil or geology maps except where the rocks are mapped as 'dolomitic'; Worcester association is most likely to contain calcareous layers in the (upper) subsoil.

8. Organic Matter

Region B: Central and NW Midlands

8.1 Overview of soil organic matter levels

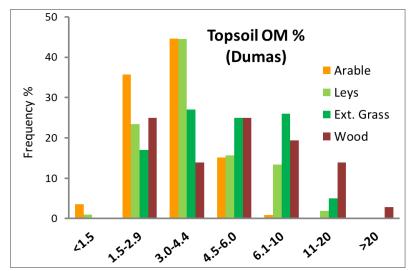


Figure 24a. Region B: Organic Matter content of Topsoil (balanced data) The categories are as specified in Soil Survey of England and Wales manual with 3-4.4% designated moderate and > 6% OM as very high (here termed 'high' and the intermediate 4.5-6% range termed 'good').

RB209 distinguishes organic soils 10-20% OM and peaty soils (>20% OM). Agronomic limits have been derived using the Walkley Black method. The Dumas method used here gives equal or slightly lower values than WB whereas Loss on Ignition gives much higher values on heavier soils (due to loss of water of hydration) and is <u>not</u> comparable.

Topsoil Organic Matter

Arable land: the median (3.2%) and modal category is 'moderate'. Few samples are very low. 16% of samples are Good or greater (4.5%+).

Grass leys tend to slightly higher topsoil OM than arable samples (median 3.8%) with 31% of samples 'good' or greater but very few 'organic'.

In extensive (presumably permanent) **grassland**, median topsoil OM is higher (4.7%). 31% of samples were > 6.0% (high) of which 5% are organic. NB This is to a sample depth of usually 20cm so in the surface layer OM% could be quite high. Amenity grass is similar.

Woodland has the highest average OM though on too small a sample size to be definitive.

It is evident from Table 18 that a few samples with very high organic matter can distort the means which is why medians are more useful for agronomic purposes.

Notwithstanding, the data implies that under "natural scenarios" (woodland, extensive and amenity grassland) the topsoil organic matter is about 1.0% greater than in leys and 1.5% higher than in arable land. Environmental issues (carbon stocks) are mentioned at the end.

	Topsoil			ι			
	mean	median	10-90%	mean	median	1 0-90%	
Arable	3.3	3.2	2.0-4.8	1.9	1.7	0.9-3.0	225
Leys	4.3	3.8	2.5-6.8	2.3	1.7	0.9-3.4	209
Extensive Grass	5.3	4.7	2.8-9.2	2.8	2.2	1.3-4.6	100
Amenity Grass	4.3	4.3	2.9-6.4	2.1	1.9	1.1-3.1	15
Wood	6.2	5.2	2.3-11.8	2.9	2.3	1.0-5.1	36

Table 18. Region B : Typical Soil Organic Matter % (balanced data)

Subsoil Organic Matter

Arable land: median is 1.7% (low). 40% of samples were very low; only 11% exceeded 3.0% and almost none exceeded 4.5%.

Under **grass leys** the subsoil OM is not greater than under arable crops. 32% of samples were very low and only 14% exceeded 3.0%.

Under **extensive Grassland and Woodland** the median OM% is about 0.5% greater but still categorised as low (<3%) though covering a wide distribution form very low to organic (>10% OM). The tail of samples with high OM might be due to the greater frequency of wet soils in these categories.

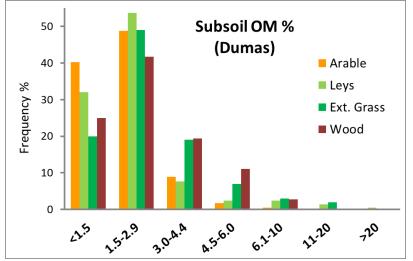


Figure 24b. Region B: Organic Matter in Subsoil (balanced data)

8.2 Factors influencing organic matter the topsoil

As shown earlier (Table 5) there is an influence of sampling method. Closer analysis (appendix 11.10) shows no difference on arable fields but on leys the corer method averages 0.7% OM higher than auger and 0.4% higher on the extensive/amenity grassland. This is almost certainly because the corer always includes the surface layer whereas samples taken from the auger may not. Since both methods were used throughout the data set the overall trends remain valid.

For arable and ley data there is a small effect of texture class - a 0.2% increase between sand and medium texture, but a larger jump (0.5%) to heavy loam or clay topsoils. The proportion of arable to ley is similar in all texture categories so land use is not the reason.

For extensive and amenity grass there is no consistent trend with texture (Table 19b). In this region there are a lot of dark sandy loams in less well drained sand and gravel deposits.

Table 19a Region B: Topsoil Texture and organic matter, All Arable and ley data

Class	Textures	Mean OM %	Median OM %	<i>n</i> arable	n levs
0	LS,S	3.24	3.2	10	8
1	SL, fSL, SZL	3.40	3.4	107	92
2	SCL, mCL (mZCL)	3.66	3.4	131	144
3,4	hCL – C	4.35	4.0	40	41

S = sand, LS = loamy sand, SL = sandy loam, fSL = fine sandy loam, SZL = sandy silt loam, mCL = medium clay loam, mZCL = medium silty clay loam, hCL = heavy clay loam, hZCL = heavy silty clay loam, SC = sandy clay, ZC = silty clay, C = clay.

8.3 Factors influencing organic matter levels in subsoil

Class	Textures	Mean	Median	n
		OM %	OM %	
(0) 1	LS, SL, SZL	5.2	4.7	64
2	SCL, mCL (mZCL)	4.4	3.9	66
3,4	hCL – C	6.7	5.2	40

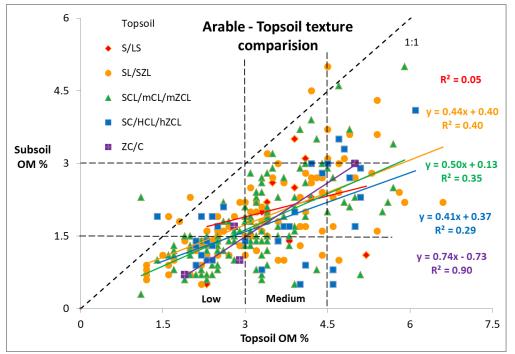

Averages in subsoil textural groups are shown in Table 20 and examined in Figures 25-27.

Table 20a Region B: Subsoil Te	cture and organic matter, All Arable and ley da	ata
--------------------------------	---	-----

Class	Textures	Arable	Arable	Ley	Ley
		mean	median	mean	median
0	LS,S	1.87	1.6	1.86	1.5
1	SL, SZL	1.80	1.6	2.14	1.8
2	SCL, mCL (mZCL)	1.91	1.8	2.07	1.7
3,4	hCL – C	1.76	1.7	2.14	1.7

Table 20b Region B: Subsoil Texture and OM, Extensive & Amenity Grass

Class	Textures	Mean	Median	n
		OM %	OM %	
0	LS	1.89	1.6	7
1	SL,SZL	2.79	2.2	42
2	SCL, mCL (mZCL)	2.35	1.9	42
3	SC, hCL, hZCL	2.46	1.8	32
4	C, ZC	2.59	2.5	46

Arable data: topsoil versus subsoil organic matter is plotted in Figure 25a.

The plots do not differ significantly for any of the *topsoil texture* categories. When topsoil OM% is moderate the subsoil is most likely to be low but can be very low (<1.5%); when topsoil is low (<3%), subsoil is most likely to be very low, but with considerable uncertainty.

Figure 25b suggests that as topsoil OM% increases the *proportionate* increase in subsoil OM% is least on heavy subsoils, increasing in order of subsoil texture: clay < heavy loams < medium < light loams

When subsoil texture category is factored in and sand subsoils excluded, the overall r^2 is improved (0.41) and fits $\Delta 0.14\%$ OM between categories. Inclusion of subsoil stoniness gives a further improvement, with 0.18% OM increase associated with each stone category in subsoil (about 10% by volume).

The subsoil data for sands may fit a lower line but r^2 is very poor (0.24) however Tables 20a,b suggest that sandy textures may retain less organic matter. If stone category is included r^2 improves for sandy subsoils and gives the same increase with stone class as sandy loams ($\Delta 0.19\%$ OM) so it can be tentatively concluded that lighter stony subsoils may concentrate the organic matter that gets taken down.

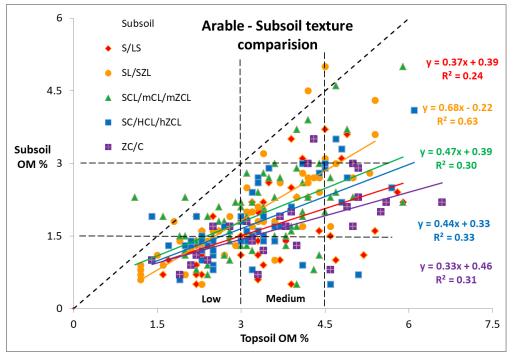


Figure 25b. Region B: Organic Matter in Topsoil and Subsoil - Subsoil Texture influence

Topsoil OM% is by far the biggest determinant of subsoil OM% but only explains 35% of the variation on the arable plots.

Relationship is Subsoil OM% = Topsoil OM% x 0.46 + 0.28 $r^2 = 0.35$

Separation of the corer and auger data shows identical intercept but the corer data has steeper slope than the auger (0.51 versus 0.36) and much better r^2 (0.53 versus 0.21). On average subsoil OM is 0.4% higher by corer method (Appendix 11.10)

The difference may be because with the corer, sampling the subsoil tends to start at a lesser depth than with the auger.

Grass data: leys, extensive and amenity grassland are combined (Figure 26). Data (10) with topsoil OM >10% are excluded to prevent undue influence. For clarity all the lines have been forced through origin with little loss of r^2 .

Subsoil texture does not affect the fitted line except for sandy loams where subsoil OM is proportionately higher, as found on the arable data (Figure 25b) and therefore probably genuine.

Under grass when topsoil OM (to 20cm+) depth is moderate, subsoil will be low or very low OM%. When topsoil OM is good (4.5-6.0%) subsoil is most likely to be low (<3.0%).

At higher topsoil OM (> 6%) subsoil OM is highly unpredictable, ranging from low to high.

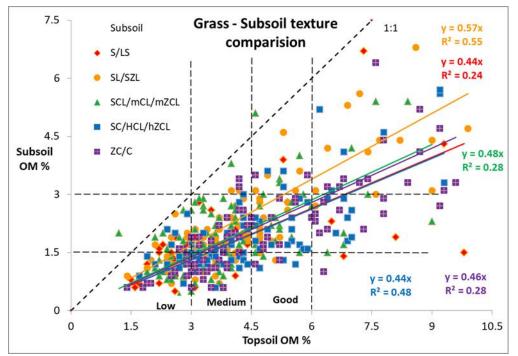


Figure 26: Region B: Organic Matter in Topsoil and Subsoil - Subsoil Texture influence

Regression analysis confirms that under grass the topsoil OM% is the biggest determinant of subsoil OM%. Relationship is

Subsoil OM% = Topsoil OM% x 0.47 + 0.1 $r^2 = 0.38$

The slope is identical to arable data but intercept appears somewhat lower.

Subsoil stoniness has a *negative* influence reducing subsoil OM by 0.35% per stone class and opposite to arable.

Separation of the corer and auger data shows very similar intercept but the corer data has steeper slope than the auger (0.50 versus 0.40) and much better r^2 (0.49 versus 0.25). On average subsoil OM was 0.26% higher by corer method (Appendix 11.10).

As with arable data the difference is probably because with the corer sampling of subsoil tends to start at a lesser depth than with the auger.

Woodland data is shown in Figure 27: examples in the organic range (>10%) are included, but rare on medium and heavy textures. Light loam subsoils fit a steeper line (the gradient is unchanged if very high point is excluded). For the other subsoil textures there is a significant intercept (>1.0%) and lower slope than found on arable and grass data, suggesting that in woodland OM accumulated in the topsoil does not penetrate so far down in medium and heavy subsoils.

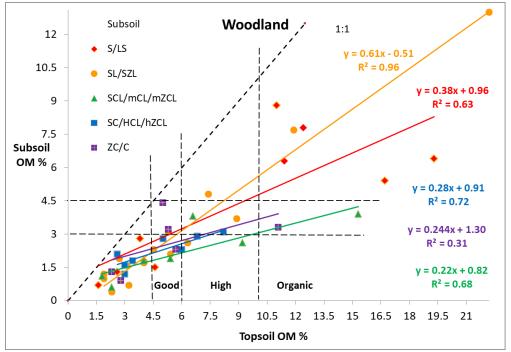


Figure 27: Region B: OM in Woodland Topsoil and Subsoil - Subsoil Texture influence

Regressions for woodland are

Sand to light loam	Subsoil OM% =	Topsoil OM% x 0.50 + 0.1	$r^2 = 0.81$
Medium to clay	Subsoil OM% =	Topsoil OM% x 0.21 + 1.32	$r^2 = 0.38$

There was no influence of sampling method.

8.4 Agronomic conclusion: organic matter levels in red soils of the Midlands

The categories are as specified in Soil Survey of England and Wales handbooks except high is here designated "Good" and Very High as "High". > 10% OM is termed 'organic'.

Sampling method had no influence of OM measurement of topsoil on arable land but was 0.4-0.7% higher on grassland, reflecting inclusion of the surface layer by corer which was not always case with samples taken from auger. Subsoil OM was proportionately higher by corer (by an average 0.4% and 0.26% on arable and grassland) which is partly due to subsoil sample starting at somewhat shallower depth than auger - in the latter purer subsoil cores were selected, frequently starting below 35cm.

Median OM values are lower than mean values and probably a more reliable indicator for agronomic purposes. Notwithstanding these uncertainties, the data for the Central and NW Midlands shows :

Arable topsoils had median OM of 3.2% (moderate). Very few samples were below 1.5% and only 16% of samples considered Good or higher (4.5%+).

Grass ley topsoils were slightly higher - median 3.8% OM with 31% of samples >4.5% but very few >10% ('organic'). Under **amenity and extensive grassland** OM was significantly

higher, medians 4.3 and 4.7% OM, though including more wet sites than other cropping categories. 5% of topsoils were >10% OM. Note that the median identifiable depth of topsoil under grassland was 25cm and samples were taken to at least 20cm depth, compared to 7.5cm or 15cm RB209 recommends for permanent and grass leys up to 5 years old.

Woodland topsoil OM was highly variable but median was 5.2%. This data suggests that under more "natural scenarios" - woodland, extensive and amenity grassland - the topsoil organic matter is about 1.0% greater than grass leys and 1.5% than arable land (though the latter has greater average sample depth (30cm versus 25cm in grass).

For arable data, topsoil texture had some influence on topsoil OM levels, median increasing from 3.2% for sandy topsoil to 4.0% on clays. There was no texture effect under grassland.

In woodland organic topsoils (>10%) were common in sand and light loam textures but rare in medium or heavy soils. The sample size (50) was small compared to other groups.

Subsoil organic matter

Subsoil OM% was strongly related to topsoil OM%, unrelated to topsoil texture but influenced by subsoil texture - with OM levels proportionately lower on sand subsoils and higher on light loam subsoils. This was found on both arable and grassland, and may be due to a) poorer OM retention on sands b) more ready carry-down of organic matter (by earthworms) on light loams than medium or clay subsoils.

Stones may concentrate any OM input from earthworms (or deeper roots). On the lighter soils there was an influence of subsoil stoniness, with each stone category (estimated 10% by volume) corresponding to $+\Delta 0.18\%$ subsoil OM on arable land but a decrease of 0.35% on grassland.

Under woodland, subsoil OM% was proportionately higher in sands and light loams, and lower in medium and clay soils.

Topsoil OM% alone explains under half the variation in subsoil OM% ($r^2 = 0.35-0.40$) in arable and grass, more under woodland. Proportionately less OM is found in subsoil under grass and woodland than arable.

Table 21 indicates typical values but the indifferent r^2 (and sampling method influence) implies considerable range around these averages cited.

As a generalisation, on arable soils at moderate organic matter (3-4.4%) the subsoil is likely to be low (1.5-2.9%). If the topsoil is low, the subsoil is low or very low.

For grass leys at moderate topsoil OM, the subsoil is likely to be low or very low OM. If topsoil is low OM subsoil will be very low. When topsoil OM is good (4.5-6.0%) subsoil is most likely to be low (<3.0%) and at high topsoil OM (> 6%) the subsoil OM is highly unpredictable, ranging from low to high.

Text	Topsoil	Equation		at	Topsoil	OM%	
Class		Subsoil OM % =	2.0	3.0	4.5	6.0	10
see *	Arable	0.46 x Topsoil OM + 0.28	1.2	1.7	2.4	3.0	4.9
see *	Grassland	0.47 x Topsoil OM + 0.1	1.0	1.5	2.2	2.9	4.8
0,1	Woodland	0.50 x Topsoil OM + 0.1	-	1.6	2.4	3.1	5.1
2-4	Woodland	0.21 x Topsoil OM + 1.32	1.1	2.0	2.3	2.6	-

Table 21: Prediction of subsoil Organic Matter

* subsoil OM somewhat more than prediction in light loam subsoils and less in sands.

As topsoil organic matter increases, some gets carried down by (historically) deep cultivation and/or earthworms or other soil forna and, this results in significant increases in OM below the normal cultivated layers. Under arable use especially clay subsoils are more resistant because a) are (historically) less likely to have been deep ploughed and b) higher packing density limits lateral rooting and earthworms are less able (or unable) to carry topsoil material downwards into the subsoil.

For arable and leys a realistic target to aim for.in the upper subsoil in Triassic soils 25-50cm depth is 2.5% (Dumas method). This will improve potash retention, phosphate availability and soil structure.

8.5 Carbon stocks

Carbon held in soil profile is <u>not</u> simply proportional to measured OM% because it also depends on horizon depths, stones and bulk density. Density is higher on sandy or compact soils.

A calculation has been devised to convert this data to total carbon to 50cm depth, adjusting for sampling depth and standardising at 0-25cm and 25-50cm. On this data it eliminated the sampling method difference for arable data, although on grassland the corer method still tends to higher estimation of carbon in the top 25cm.

Mean calculated carbon 0-50cm depth was **95 t C/ha** on arable land increasing to **137 t C/ha** under extensive (permanent) grassland and 160 t C/ha under woodland. These averages are lower than calculated for the north east region Carboniferous soils - 125 t/ha on arable land and 170 t/ha under grass, though the latter region had a lesser representation of lighter soils.

The calculation needs peer review and verification before any data can be published. Soil texture may be critically important, especially under woodland.

For environmental studies, subsoil OM and carbon might be approximated from topsoil measurement using Table 21 but both topsoil and (ideally) subsoil needs to be measured to standardised sampling depths using a corer method.

9. Total Nitrogen

Region B: Central and NW Midlands

Total N measurement is of environmental and agronomic relevance. It influences the release of available nitrogen to crops (and grass) by mineralisation. The AHDB winter wheat guide (2012) stated these limits and organic matter measurement might be used as a surrogate.

Topsoil	Topsoil	Additio	nal SNS
organic matter	total N	England & Wales	Scotland & N Ireland
<6%	under 0.35%	Insignificant	Insignificant
6-10%	0.35 to 0.6%	+ 40kg/ha N	Insignificant
11-15%	0.6 to 0.9%	+ 100kg/ha N	+ 20kg/ha N
16-20%	1.0 to 1.2%	+ 150kg/ha N	+ 60kg/ha N
>20%	over 1.2%	+>150kg/ha N	+>100kg/ha N

Increase soil N supplies to allow for mineralisation, according to Table 9.

While these estimates of mineralisable N are not quoted in *The Fertiliser Manual* or *SAC Technical Note 625,* they are derived from these N recommendations.

RB209 (2017) Arable p16 states "As a guide, where measurement is not done, for every 1% organic matter above 4%, a topsoil may release an additional 10 kg N/ha to crops" (equivalent to a fertiliser-substitute 15 kg N/ha if fertiliser is 65% efficient).

This report uses the above total N ranges to rank values in the data set. 0.23% total N corresponds to the 4% OM implied above.

Not all samples were measured for total N and these data are in clusters so may not be as representative averages as the PKMg pH or OM graphs derived from the 'balanced' data set.

Total N in topsoil

Arable: Figure 28a shows that hardly any topsoils were in the 0.35%+ category, although 32% were >0.22% TN and therefore eligible for a small mineralisation adjustment to the nitrogen recommendations. Median TN was 0.19% (Table 23), very close to the 0.2% figure often cited as typical.

Grass: the number of samples >0.35% and 0.23-0.34% TN rose to 10 and 38% of the data. It is uncertain whether such raised total N will persist once these soils revert to arable use.

Total N levels tend to be higher under extensive (permanent) grassland and highly variable under woodland.

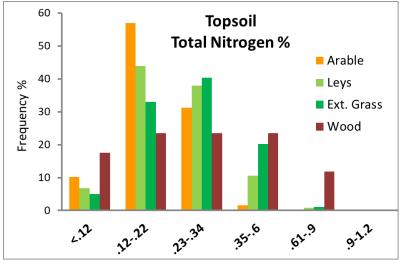
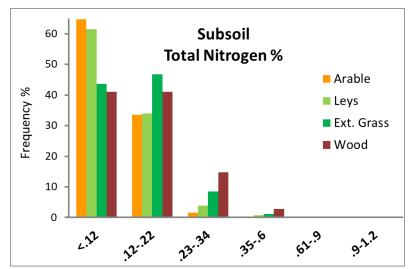
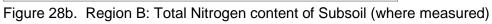




Figure 28a. Region B: Total Nitrogen content of Topsoil (where measured)

Topsoil N in subsoil

Arable and ley subsoils averaged 0.1% TN, somewhat higher under extensive grass and woodland.

Table 22	Region B :	Typical Soil	Total Nitrog	gen % (where measured)
----------	------------	---------------------	---------------------	----------------	-----------------

		Topsoil		ι	Jpper Subs	soil	
	mean	median	10-90%	mean	median	10-90%	n
Arable	0.19	0.19	0.11-0.27	0.11	0.10	0.06-0.16	128
Leys	0.24	0.22	0.12-0.35	0.11	0.10	0.06-0.17	132
Extensive Grass	0.26	0.26	0.12-0.38	0.14	0.13	0.06-0.21	94
Amenity Grass	0.20	0.21	9.12-0.27	0.11	0.08	0.05-0.17	9
Wood	0.30	0.28		0.15	0.14	0.05-0.27	34

Factors affecting total Nitrogen levels

Nitrogen resides mainly in the organic matter and not surprisingly shows a strong correlation with measured OM. Statistical analysis is summarised in Table 23. OM is reported as 1.72x Carbon; the commonly cited C:N ratio of 10:1 should give a coefficient of 0.058 OM.

In fact, all but one data sets have slope <0.058 and significant intercept (P < 0.01, see Appendix 11.11) which implies that C:N ratio diminishes as the level of organic matter (and TN) increases.

Notwithstanding the C:N ratio averaged about 10 for arable and leys, although the standard deviation is quite wide. The samples were taken in clusters of 2 to 15 samples, usually in the same field, and analysis indicates that variation within a cluster is often lower than the variation between clusters. Some clusters averaged as low as 8:1 and some as high as 12:1.

C:N seems to be higher on extensive grassland and woodland, and clusters in some woods gave significantly different average values than in other woods.

C:N ratio in subsoil on average is 0.5 less than in topsoil for arable, grass and woodland.

Table 23 Region B : Predicting Soil Total Nitrogen from Organic Matter measured by
Dumas Method (OM = OC x 1.72)

		Equation	ľ2	C:N mean	C:N std dev
Arable	Topsoil	$TN = OM \times 0.045 + 0.04$	0.66	10.5	2.0
	Subsoil	$TN = OM \times 0.041 + 0.03$	0.60	10.1	2.8
Leys	Topsoil	$TN = OM \times 0.047 + 0.05$	0.63	10.1	2.5
	Subsoil	$TN = OM \times 0.038 + 0.04$	0.71	9.7	2.6
Extensive	Topsoil	$TN = OM \times 0.053 + 0.01$	0.86	12.1	1.9
Grassland	Subsoil	$TN = OM \times 0.047 + 0.02$	0.77	11.0	3.1
Woodland	Topsoil	$TN = OM \times 0.035 + 0.06$	0.82	12.6	3.4
	Subsoil	$TN = OM \times 0.036 + 0.03$	0.87	12.1	2.9

The data suggests that C:N ratio is affected by management factors, and possibly soil texture/type. Direct measurement of total N to estimate nitrogen mineralisation is better than carbon measurement unless the causes of variable C:N ratio can be quantified. This will be examined in more detail combining with data from the southern region.

Dumas is a good method for measuring organic carbon inasmuch as it gives C:N ratios broadly in line with expectations. However, when carbon is calculated from organic matter measured by Loss on Ignition commonly gives C:N ratios 12-14:1 which are misleading.

10. Evaluation of Accuracy of Geological and Soil Survey maps

BGS Geology maps

British Geological Society (BGS) maps ¹ are very detailed and a full breakdown is given in table 24 below.

Trends of hand-texture

a) on the Sandstones, and Sand & Gravel deposits main texture is sandy loam but could vary from sand to medium loam (Class 2, 18-27% clay) or heavier.

b) on mudstones, Glacial Till and Alluvium median texture is medium but varies from sandy loam to clay in topsoil or upper subsoil (to 50cm). Very few samples marked as directly on Mudstone had clay topsoils and relatively few had clay subsoil 30-50cm. This is indicative of widespread 'thin loamy drift' not mapped by BGS.

Profiles in Glacial Till could exhibit short range variation of sandy (LS) and clayey (SC) layers, and areas mapped as Sand & Gravel could contain heavier loam layers. Frequently the underlying stoneless red clay (Solid Mudstone) was encountered within 80cm, conversely on areas mapped as drift-free there could be sandy or loamy deposits covering the clay to at least 60cm.

Sometimes there were interlayers of red hCL or SL texture in the lower subsoil derived from the solid geology (i.e. sandstone within mudstone).

Soil Survey maps

Each point was located on the Soil Survey of England and Wales 1:250 000 maps ²

25 associations are present; a full breakdown is given in second Table 25.

Experience of the surveyors was that the majority of soil profiles and their drainage corresponded to descriptions in the SSEW manuals. However the latter cite a range of textures within each association and in 26% of profiles surveyed the textures of topsoil were judged outside the generic description and 42% the textures in upper subsoil (values in red).

Soils mapped within *Arrow, Brockhurst and Clifton* Associations have very wide variation in textures which is in some cases because changes in Drift or Solid geology on the BGS maps are combined into a single larger area on the SSEW maps. The main limitations of using the BGS maps to predict profiles are the uncertain depth and variable nature of superficial deposits (often not shown) and inter-bedding in some Solid deposits.

Clearly neither SSEW nor BGS maps are safe to rely on to deduce the soil texture without field examination.

Table 24 Region B: Geology Summary and Textures

Numbers of locations unless indicated %.Hand-Texture Class : 0 = sand ,loamy sand 1= sandy loam, sandy silt loam 2 = sandyclay loam, medium clay loam 3 = sandy clay, heavy clay loam, heavy silty clay loam,4 = silty clay, clayP PeatyMedian value emboldened.

BGS Geological designation		No	Surface	То	psoil	Text	ure o	lass		U. S	Subs	oil Te	extur	e Cla	ass
	Solid	Drift	%	0	1	2	3	4	Ρ	0	1	2	3	4	Ρ
Sandstones															
Butterton Sandstone	1	1	0.2			1					1				
Chester Mudstone & Conglomerate	17	11	1.9	1	9	1				2	7	2			
Chester pebbly Sandstone	4	3	0.5		3					1	2				
Helsby Sandstone	23	22	3.8	2	15	4	1			5	13	1	3		
Salop Sandstone	4	3	0.5		1	2				1		2			
Kenilworth Sandstone	9	8	1.4	1	6	1					7	1	1		
Lenton Sandstone	3	1	0.2		1						1				
Tile Hill Sandstone	2	2	0.3		1	1					2				
Wildmoor Sandstone	33	21	3.6	4	15	2				9	6	6			
	16%		12%							_					
Siltstones or mixed	- / -														
Arden Sandstone	2	2	0.3			1		1			1			1	
Ashow Mudstone & Sandstone	9	9	1.5		4	4	1				1	4	4		
Disewell Sandstone	1	1	0.2		•	•	1					-	1		
Edlingston Mudstone & Sandstone	2	2	0.3				2						2		
Gunthorpe Dolomitic Siltstone	1	1	0.2				1						_	1	
Halesowen Formation	16	6	1.0		2	3	1			1	1	3		1	
Sidmouth Dolomitic Siltstone	4	3	0.5		-	2	1			·	•	·	3	•	
Tarporley Siltstone	16	16	2.7		6	8	2			1	6	5	4		
	9%		7%		Ũ	Ū	-			·	•	•	•		
Mudstones															
Branscombe Mudstone	36	15	2.6		4	9	2				2	6	7		
Gunthorpe Mudstone	64	8	1.4		3	2	1	2				3	3	2	
Helsby Mudstone	1	1	0.2		1							1			
Mercia Mudstone	52	21	3.6		6	12	3			1	1	14	4	1	
Mercia Mudstone & Halite	66	58	9.9		9	36	9	4		1	9	23	13	12	
Salop Mudstone & Conglomerate	22	16	2.7		-	14	2			1	1	4	4	6	
Sidmouth Mudstone	121	10	1.7			6	4			1		4	3	2	
Tarporley Mudstone	6	4	0.7		1	3	-				1	2	1	_	
Tile Hill Mudstone	13	2	0.3		1	1					•	2	•		
Wilkersley Mudstone & Halite	54	2	0.3		1	1					2	_			
	75%		22%		-	-					_				
Drift															
Alluvium		67	11.4		19	21	22	5		4	12	14	13	24	
Silt & Gravel		1	0.2				1							1	
Beeston Sand & Gravel		33	5.6	0	21	10	1		1	8	17	6	1	1	
River Terrace Sand & Gravel		34	5.8		19	8	5	2		6	16	4	4	4	
Glaciofluvial Sand & Gravel		82	14.0	7	46	26	3	_		23	29	16	7	7	
Glacial Till (usually reddish)		98	16.7	1	24	65	8			8	24	35	17	14	
Oadby Till (not red)		10	1.7		1	1	7	1		Ĭ		2	1	7	
Head		1	0.2		•		1	•				-	1	•	
Peat		4	0.2			4					1		1	1	1
		т				т				1			-		
Disturbed		4	0.7		1	1	3					3	2		

Table 25 Region B: Soil Associations and hand-textures

Numbers of locations unless indicated %. Texture Classification see Table 24 Textures in red lie outside those in designation for the Soil Association (sandy = 0, coarse loamy = 1, fine loamy = 2, 3, clayey = 3,4)

Мар	Soil	Description (abbreviated)			То	psoil	Text	ure c	lass		U. S	Subso	oil Te	exture	e Cla	ss
Code	Association		n	%	0	1	2	3	4	Ρ	0	1	2	3	4	Ρ
431	Worcester	Slowly permeable non- or calcareous reddish clayey soils over mudstone.	10	1.7		1	2	4	3				2	4	4	
543	Arrow	Deep permeable coarse loamy soils affected by groundwater	50	8.6	2	25	19	3	1		8	19	15	7	1	
541b	Bromsgrove	Well drained coarse loamy soils mainly over soft sandstone, locally deep.	21	3.6	1	17	3				2	16	2	1		
541r	Wick 1	Deep well drained sandy and coarse loamy soils, locally over gravel	57	9.8	1	29	19	6	2		9	19	13	8	7	1
551a	Brignorth	Well drained sandy and coarse loamy soils over soft sandstone.	47	8.0	5	31	9	2			16	17	12	2		
551d	Newport 1	Deep well drained sandy and coarse loamy soils.	9	1.5	2	5	2				4	2	1	2		
572c	Hodnet	Reddish fine and coarse loamy soils with slowly permeable subsoils.	11	1.9		2	7	2				2	6	3		
572f	Whimple 3	Reddish fine loamy/silty over clayey soils with slowly permeable subsoils	117	20.0		18	81	15	3		6	15	50	26	20	
572l	Flint	Reddish fine loamy over clayey soils with slowly permeable subsoils	2	0.3		1	1					1	1			
711b	Brockhurst 1	Slowly permeable reddish fine loamy over clayey and clayey soils	33	5.7		13	15	4	1		1	10	5	7	10	
711c	Brockhurst 2	As above with some alluvial soils affected by groundwater	4	0.7		2		2			1	1		2		
711m	Salop	Slowly permeable reddish fine loamy over clayey and clayey soils	13	2.2			3	9	1				1	6	6	
711n	Clifton	Slowly permeable reddish coarse and fine loamy soils.	100	17.1	3	30	57	7	1		11	25	31	16	15	
711o	Rufford	Slowly permeable coarse loamy over clayey soils	7	1.2		2	5				2	2	2	1		
711t	Beccles 3	Slowly permeable fine loamy over clayey soils.	3	0.5		1	1	1					2		1	
712f	Crewe	Slowly permeable reddish clayey and fine loamy over clayey soils	1	0.2			1						1			
811a	Enborne	Deep stoneless fine loamy and clayey soils (groundwater affected)	1	0.2			1					1				
813a	Mildeney	Stonless clayey soils mostly overlying peat (groundwater affected)	9	1.5		3	0	5	1			1	2	3	3	
813b	Fladbury 1	Stoneless clay soils, locally calcareous (groundwater affected)	10	1.7		4	2	4				3	2	1	4	
813c	Fladbury 2	Stoneless mostly clayey soils (groundwater affected)	9	1.5		4	2	2	1			1	2	3	3	
813e	Compton	Stoneless mostly clayey soils (groundwater affected)	4	0.7				3	1					1	3	
821b	Everingham	Deep permeable stoneless fine sandy soils (groundwater affected)	39	6.7	2	23	11	2		1	12	15	9	1	2	
831c	Wigton Moor	Permeable fine and coarse loamy soils (groundwater affected)	16	2.7		3	5	8				6	3	3	4	
1022a	Altcar 1	Deep peaty soils with earthy topsoil. Groundwater controlled by ditches	9	1.5		2	3	4			2	0	2	3	2	
U	Urban	· · · · · ·	1	0.2		1						1				

References

1 http://mapapps.bgs.ac.uk/geologyofbritain/home.html

2 J.M.Ragg,, G.R. Beard, .H.George et al (1984) Soils and their Use in Midland and Western England. Soil Survey of England and Wales Bulletin 12

11. Regression and correlation

Correlation coefficients (P) are shown in matrix tables; higher means stronger relationship. In analysis of regression P <0.05 means high certainty the variable is significant, but greater values are considered if overall r^2 is improved by including the factor. Texture and stones are classes 0-4 and 0-3

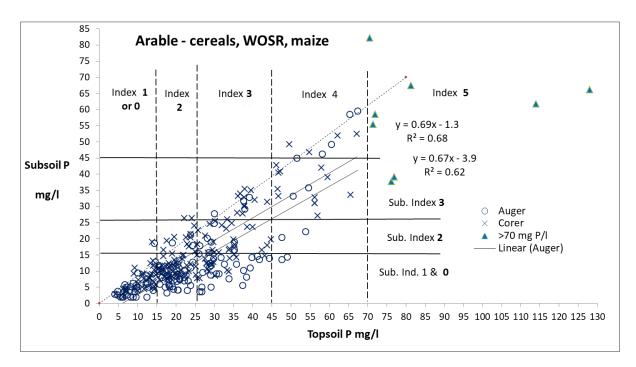
All alable uata	excluding	topsoils of	> 35 mg P/	I						
Organic Matter	max. valu	es set at 10	% topsoil a	and 7.5% su	ubsoil					
	Method	Top Depth	op Texture	Top stone	Тор ОМ	Тор рН	Тор Р	Тор К	Тор Мд	Sub P
Method	1									
Top Depth	-0.41	1								
Top.Texture	0.01	-0.04	1							
Top stone	0.14	-0.21	-0.22	1						
Тор ОМ	0.06	0.36	0.03	-0.23	1					
Тор рН	-0.08	0.10	0.01	0.29	-0.08	1				
Тор Р	0.08	0.08	-0.32	0.05	-0.11	0.22	1			
Тор К	-0.11	0.05	-0.08	0.03	0.12	0.27	0.35	1		
Top Mg	0.02	-0.16	0.51	-0.01	0.09	0.25	-0.08	0.03	1	
Sub P	0.14	0.12	-0.34	-0.08	-0.07	0.06	0.71	0.13	-0.18	
Conclusions										
Auger method	(0) gets de	eper topso	oils than co	rer metho	d (1)					
Topsoil P corre	lates only	with Topsc	il texture c	lass (nega	tively) and	Topsoil K				
There may be a	a small pos	itive influe	nce of Top	soil pH.						
Subsoil P corre	lates only	with Topsc	il P and To	psoil Textu	ire Class (n	egatively)				
These two fact	ors were is	olated for	regression	analysis b	elow					
Multiple R	0.72									
R Square	0.52									
Adjusted R Squ	0.51									
Standard Error	3.75									
Observations	158									
ANOVA										
	df	SS	MS	F	gnificance	F				
Regression	2	2378.04	1189.02	84.34	1.65E-25					
Residual	155	2185.14	14.10							
Total	157	4563.18								
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%	pper 95.0%	6	
Intercept	2.56	1.27	2.02			5.06	0.05	5.06		
Topsoil P	0.46	0.04	11.45	0.00	0.38	0.54	0.38	0.54		
Topsoil Textur	-0.83	0.38	-2.18			-0.08	-1.57	-0.08		
-										
Equation	Subsoil P	= 0.46 x To	psoil P -	0.83 x Text	ure Class	+ 2.56		r ² = 0.52		
Texture Class										
	Subsoil P =	= 0.46 x Toi	osoil P + 2	2.6						
SL			osoil P + 1							
SCL			osoil P + (
			osoil P - 0.							
hCL	Subsoil P =	= ().46 X I OI	35011P - 11							

11.1 Influence of topsoil parameters on subsoil P

	Method	Top DepthT	op.Texture	Top stone	Тор ОМ	Тор рН	Тор Р	Тор К	Тор Мд
Method	1		-					-	
Top Depth	-0.42	1.00							
Top Texture	-0.15	0.18	1.00						
Top stone	0.07	0.11	-0.31	1.00					
Тор ОМ	0.15	-0.30	0.30	-0.10	1.00				
Тор рН	-0.21	0.35	0.30	-0.14	-0.24	1.00			
Тор Р	0.11	-0.11	-0.40	0.29	-0.14	-0.06	1.00		
Тор К	0.18	-0.17	0.10	0.17	0.29	0.05	0.27	1.00	
Top Mg	-0.21	0.04	0.25	-0.21	0.01	0.47	-0.11	0.14	1.0
Sub P	0.15	-0.11	-0.45	0.22	-0.24	-0.10	0.86	0.05	-0.1
SUMMARY OUT	PUT								
Regression S	tatistics								
Multiple R	0.87								
R Square	0.76								
Adjusted R Squ									
Standard Error	1.99								
Observations	46								
ANOVA									
	df	SS	MS	F	gnificance	F			
Regression	2	536.62	268.31	67.51	5.42E-14				
Residual	43	170.89	3.97						
Total	45	707.51							
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%	oper 95.0%	6
Intercept	2.07	1.16	1.79	0.08			-0.26	4.40	
Topsoil Textur	-0.56	0.36	-1.58	0.12	-1.28	0.16	-1.28	0.16	
Topsoil P	0.43	0.04	9.91	0.00	0.34	0.52	0.34	0.52	
Introduction of	⁻ Topsoil st	one catego	ry had stor	ne co-effici	ent of -0.4	3 (illogical)	and P valu	e high (0.4	47)
Addition of To	osoil OM%	had a negli	gible co-ef	ficient (-0	.1 per %)				
So only Topsoi			-			set)			
			psoil P -			+ 2.07		r ² = 0.76	

11.2 Influence of Subsoil parameters on subsoil P

All arable dat	a (topsoil F	oup to 70 r	ng/l)					
	Method	Topsoil P	Sub text	Sub stone	Sub OM	Sub pH	Sub P	Sub K
Method	1							
Topsoil P	0.07	1						
Sub Texture	-0.04	-0.29	1					
Sub Stones	0.19	-0.04	-0.19	1				
Subsoil OM%	0.25	0.26	-0.04	0.20	1			
Subsoil pH	-0.12	0.03	0.20	-0.18	-0.14	1		
Subsoil P	0.20	0.80	-0.30	0.12	0.36	-0.02	1	
Subsoil K	0.08	0.43	0.09	0.13	0.20	0.12	0.43	1
Grass leys tps	oil P up to	70 mg/l)						
<u> </u>	Method	Topsoil P	Sub text	Sub stone	Sub OM	Sub pH	Sub P	Sub K
Method	1	,				,		
Topsoil P	0.02	1						
Sub Texture	-0.07	-0.07	1					
Sub Stones	0.24	0.11	-0.30	1				
Subsoil OM%	0.19	0.03	-0.07	-0.02	1			
Subsoil pH	-0.02	0.27	0.09	-0.15	-0.07	1		
Subsoil P	0.11	0.78	-0.21	0.15	0.10	0.19	1	
Subsoil K	0.00	0.56	0.14	0.06	0.03	0.06	0.42	1
Extensive Gra	ssland (to	nsoil P un t	o 70 mg/l)					
Extensive die	Method	Topsoil P		Sub stone	Sub OM	Sub pH	Sub P	Sub K
Method	1	repeent	040 (0.11		000 0111	002 p.r.	0001	0001
Topsoil P	0.11	1						
Sub Texture	-0.14	-0.32	1					
Sub Stones	0.22	0.06	-0.43	1				
Subsoil OM%	0.08	0.04	0.01	0.05	1			
Subsoil pH	-0.03	-0.09	0.38	-0.12	-0.22	1		
Subsoil P	0.26	0.79	-0.38	0.20	0.13	-0.19	1	
Subsoil K	0.15	0.51	-0.08	0.14	0.22	0.16	0.39	1


The biggest determinant of subsoil P in all cases is topsoil phosphorus (P0.8). Subsoil texture is of secondary importance. Subsoil Organic matter is important on arable soils but less on grassland. Sampling method is of some influence, probably via altering the organic matter in the sample.

pH has an inconsistent effect. Higher subsoil K seems associated with higher subsoil P.

All arable data exc	ept Topsc	oil P exceedi	ng 35 mg/l					
	Тор Р	Sub texture	Sub stone	Sub OM	Sub pH	Sub P		
Тор Р	1.00		Sub stone	SUD OIVI	Subpri	JUDF		
Sub texture	-0.28							
Sub stone	-0.28		1.00					
Sub Stone	-0.08			1.00		ONLlimita	d to 6% ma	
					1 00		u to 6% ma	X
Sub pH	0.22			-0.30	1.00			
Sub P	0.71	-0.41	0.00	0.15	0.09	1.00		
	Ton D	Sub toyturo	Substand	SubOM	Suball	Sub P		
Tara D	Top P	Sub texture	Sub stone	SUD OIVI	Sub pH	SUDP		
Top P	1							
Sub texture	-0.28	1.00	4.00					
Sub stone	-0.06		1.00	4.00				
Sub OM	-0.06			1.00			d to 4.5% r	nax
Sub pH	0.22			-0.29	1.00			
Sub P	0.71	-0.41	0.00	0.17	0.09	1		
Subsoil Texture Cl SUMMARY OUTPU Regression Sta Multiple R	T		ficient tha	n Topsoil T	exture (-0	.34)		
R Square	0.51							
Adjusted R Square	0.51							
Standard Error	3.80							
Observations	158							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	-	2311.01743				-		
Residual		2252.16637						
Total	157							
C	oefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	0.26	0.71	0.36	0.72	-1.15	1.66	-1.15	1.66
Topsoil P	0.49	0.04	12.65	0.00	0.41	0.57	0.41	0.57
		xturo alono						
r2 = 0.51 based on r2 = 0.17 based on	-		lone					

continued

11.3 Effect of sampling method on topsoil P: subsoil P relationship

Data above 70 mg P/l is excluded from the correlation lines though it follows a similar trend. Both techniques give significant correlation of subsoil P with topsoil P (r2 > 0.6) and similar slope but the corer (the higher line) gives subsoil P 2.6 mg/l higher than the auger technique probably due to lower start depth when taking the subsoil sample (see section 1).

The next two pages examine unified data (arable and grass minus reinstated profiles) for influence of method for different textural groups of subsoils.

All Arable and O		-		and medi	unnioanny			
Affect of sampl	-	a on Subsc						
Regression St								
Multiple R	0.76							
R Square	0.57							
Adjusted R Squ	0.57							
Standard Error	4.24							
Observations	383							
ANOVA	16			_		-		
D	df	SS	MS		gnificance	F		
Regression	2	9135.402	4567.701	253.5747	1.1E-70			
Residual	380	6845.03	18.01324					
Total	382	15980.43						
		andard Err	t Stat				ower 95.0%p	
Intercept	0.13	0.49	0.27	0.79	-0.83	1.09	-0.83	1.09
Method	2.15	0.44	4.92	0.00	1.29	3.01	1.29	3.01
Topsoil P	0.51	0.02	21.50	0.00	0.47	0.56	0.47	0.56
Method (corery Intercept is zero				-				
intercept is zero	o anu prop	ortionality	13 31/0 01					
All Arable and O				subsoil				
Affect of sampl		a on Subso	NI P					
Regression St								
Multiple R	0.79							
R Square	0.62							
Adjusted R Squ	0.62							
Standard Error	3.16							
Observations	123							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	2	1980.219	990.1097	99.34456	3.54E-26			
Residual	120	1195.97	9.966421					
Total	122	3176.19						
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	-0.49	0.65	-0.74	0.46	-1.78	0.81	-1.78	0.81
Method	2.70	0.57	4.69	0.00			4 5 6	3.84
Topsoil P			4.09	0.00	1.56	3.84	1.56	5.04
төрзөнт	0.42	0.03	13.40	0.00		3.84 0.49	1.56 0.36	
Method (corer			13.40	0.00				
Method (corer	vs auger) i	ncreases si	13.40 Ibsoil by 2	0.00 .7 mg P / I				
	vs auger) i G rass up to	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer	vs auger) i Grass up to ing metho	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl	vs auger) i Grass up to ing metho	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl Regression St Multiple R	vs auger) i Grass up to ing metho ratistics	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square	vs auger) i Grass up to ing metho atistics 0.74	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl Regression St Multiple R	vs auger) i Grass up to ing metho <i>atistics</i> 0.74 0.55	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ	vs auger) i Grass up to ing metho atistics 0.74 0.55 0.54	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations	vs auger) i Grass up to ing metho atistics 0.74 0.55 0.54 2.89	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I				0.49
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error	vs auger) i Grass up to ing metho ratistics 0.74 0.55 0.54 2.89 108	ncreases su o 35 mg/l, C	13.40 Ibsoil by 2 lay subsoi	0.00 .7 mg P / I I	0.36	0.49		
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA	vs auger) i Grass up to ing metho atistics 0.74 0.55 0.54 2.89	ncreases su o 35 mg/l, C d on Subso	13.40 Ibsoil by 2 Iay subsoi il P	0.00 .7 mg P / I I	0.36	0.49		
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations	vs auger) i Grass up to ing metho atistics 0.74 0.55 0.54 2.89 108 df 2	SS 1062.35	13.40 Ibsoil by 2 Iay subsoi il P <i>MS</i> 531.1751	0.00 .7 mg P / I I	0.36	0.49		
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression	vs auger) i Grass up to ing metho atistics 0.74 0.55 0.54 2.89 108 df	st mg/l, C o 35 mg/l, C d on Subsc	13.40 Ibsoil by 2 Iay subsoi il P	0.00 .7 mg P / I I	0.36	0.49		
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	vs auger) i Grass up to ing metho ratistics 0.74 0.55 0.54 2.89 108 df 2 105 107	SS 875.9265	13.40 Ibsoil by 2 Iay subsoi il P <i>MS</i> 531.1751	0.00 .7 mg P / I I F 63.67359	0.36 gnificance 7.77E-19	0.49		0.49
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	vs auger) i Grass up to ing metho ratistics 0.74 0.55 0.54 2.89 108 df 2 105 107	SS 1062.35 875.9265 1938.277	13.40 ibsoil by 2 lay subsoi il P <i>MS</i> 531.1751 8.342157	0.00 .7 mg P / I I F 63.67359	0.36 gnificance 7.77E-19 Lower 95%	0.49		0.49
Method (corer All Arable and C Affect of sampl Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	vs auger) i Grass up to ing metho ratistics 0.74 0.55 0.54 2.89 108 df 2 105 107 roefficients	SS 1062.35 875.9265 1938.277	13.40 ibsoil by 2 ilay subsoi il P <i>MS</i> 531.1751 8.342157 <i>t Stat</i>	0.00 .7 mg P / I I F 63.67359 P-value	0.36 gnificance 7.77E-19 Lower 95% -0.29	0.49 F Upper 95%	0.36	0.49

All Arable	and Grass	35-80 mg/l	, Sand to n	nedium su	bsoil			
	ampling m							
	n Statistics							
Multiple F								
R Square	0.31							
Adjusted								
Standard I								
Observati								
ANOVA								
	df	SS	MS	F	gnificance	F		
Regressio	,	5290.571	2645.286	18.93229				
Residual	84	11736.77	139.7235					
Total	86	17027.34						
	Coefficients	andard Err	t Stat	Dualua	Lower OE%	Upper OE%	ower OF Of	nor OE O
Intercept	-8.50	6.74	-1.26	0.21		4.91	<i> 00 ower 95.0</i> % -21.91	4.91
Method	4.87	2.66	1.83	0.21	-21.91	10.17	-21.91	10.17
Top P	0.79	0.13	6.10	0.07		1.05	0.43	1.05
	corer vs aug					1.05	0.55	1.05
wethou (t	LOIEI VS aug	ger) increa:	ses subsoli	by 5 mg F	/ 1			
All Arable	and Grass	35-80 mg/l	, heavy loa	am or clav	subsoil			
	sampling m	-						
Regression								
Multiple F								
R Square	0.65							
Adjusted								
Standard I								
Observati								
ANOVA								
/	df	SS	MS	F	qnificance	F		
Regressio	· · · · ·	4244.085	2122.042	, 17.95288		,		
Residual	19	2245.813	118.2007	17.55200	4.152 05			
Total	21	6489.898	110.2007					
			_					
	Coefficients		t Stat				ower 95.0%	
Intercept	-32.97	9.61	-3.43	0.00		-12.87		-12.87
Method	8.28	5.23	1.58	0.13		19.21	-2.66	19.21
Тор Р	1.18	0.21	5.61	0.00		1.62	0.74	1.62
	corer vs aug	ger) increa	ses subsoil	by 8 mg P	/1			
Slope exc	eeds 1							
Woodland	d (all textu	roc and ton		0 ma/l				
Affect of s			3011 F U - 3	o mg/i				
Anectors								
Regression								
	n Statistics							
Multiple F	n Statistics 0.85							
Multiple F R Square	0.85 0.73							
Multiple F R Square Adjusted	n Statistics 0.85 0.73 0.72							
Multiple F R Square Adjusted Standard I	n Statistics 0.85 0.73 0.72 7.03							
Multiple F R Square Adjusted Standard I Observati	n Statistics 0.85 0.73 0.72 7.03							
Multiple F R Square Adjusted Standard I	n Statistics 0.85 0.73 0.72 7.03 50		MS	F	anificance	F		
Multiple F R Square Adjusted Standard I Observati ANOVA	n Statistics 0.85 0.73 0.72 7.03 50 df	55	<u>MS</u> 3118.83	F 63.03903	gnificance 4.96E-14	F		
Multiple F R Square Adjusted Standard I Observati ANOVA Regressio	n Statistics 0.85 0.73 0.72 7.03 50 df 2	<u>SS</u> 6237.66	3118.83	<i>F</i> 63.03903	gnificance 4.96E-14	F		
Multiple F R Square Adjusted Standard I Observati ANOVA	n Statistics 0.85 0.73 0.72 7.03 50 df	55			3 1	F		
Multiple F R Square Adjusted Standard I Observati ANOVA Regressio Residual Total	n Statistics 0.85 0.73 0.72 7.03 50 df 2 47 49	<u>SS</u> 6237.66 2325.305 8562.965	3118.83 49.47458	63.03903	4.96E-14			2005 05 05
Multiple F R Square Adjusted Standard I Observati ANOVA Regressio Residual Total	n Statistics 0.85 0.73 0.72 7.03 50 df 2 47 49 Coefficients	<u>SS</u> 6237.66 2325.305 8562.965 andard Err	3118.83 49.47458 t Stat	63.03903 P-value	4.96E-14 Lower 95%	Upper 95%	ower 95.0%	
Multiple F R Square Adjusted Standard I Observati ANOVA Regressio Residual Total () Intercept	n Statistics 0.85 0.73 0.72 7.03 50 df 2 47 49 Coefficients -1.27	SS 6237.66 2325.305 8562.965 andard Err 1.86	3118.83 49.47458 t Stat -0.68	63.03903 P-value 0.50	4.96E-14 Lower 95% -5.00	Upper 95% 2.47	-5.00	2.47
Multiple F R Square Adjusted Standard I Observati ANOVA Regressio Residual Total	n Statistics 0.85 0.73 0.72 7.03 50 df 2 47 49 Coefficients	<u>SS</u> 6237.66 2325.305 8562.965 andard Err	3118.83 49.47458 t Stat	63.03903 P-value	4.96E-14 Lower 95% -5.00 1.54	Upper 95%	-5.00 1.54	<i>oper 95.0</i> 2.47 9.80 0.63

11.4 Effect of Subsoil Organic Matter on topsoil: subsoil P relationship

All Arable and (and medi	um loamy s	subsoil		
Affect on Subso		vi capped a	at 9%					
Regression St								
Multiple R	0.76							
R Square	0.58							
Adjusted R Squ	0.57							
Standard Error	4.23							
Observations	383							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	2	9190.644	4595.322	257.1836	2.35E-71			
Residual	380	6789.789	17.86786					
Total	382	15980.43						
	`oefficients	andard Err	t Stat	P-value	lower 95%	Inner 95%	ower 95.0%p	ner 95 ()
Intercept	-0.66	0.56	-1.18	0.24		0.44	-1.75	0.44
Subsoil OM%	0.88	0.50	5.24	0.24		1.21	0.55	1.21
Topsoil P	0.53	0.02	22.24	0.00		0.58		0.58
OM has a certai							0.40	0.50
					P DY 0.9 Mg	5/1		
Intercept is zer	o and prop	ortionality	IS 53% OF	topsoli P				
All Arable and	Grass un to	35 mg/l s	andv light	and medi	um loamv «	subsoil		
Affect on Subso				. and mea	unnounny s	005011		
Regression St		n cappe a a	070					
	0.76							
Multiple R								
R Square	0.58							
Adjusted R Squ	0.58							
Standard Error	4.18							
Observations	383							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	9331.512	4665.756	266.6579	4.37E-73			
Residual	380	6648.92	17.49716					
Total	382	15980.43						
(oefficients	andard Err	t Stat	P_value	lower 95%	Inner 95%	ower 95.0%p	ner 95 0
Intercept	-1.15	0.58	-1.99	0.05		0.02-0	-2.29	-0.02
Subsoil OM%	1.13	0.38	6.01	0.00		1.57		1.57
Topsoil P	0.53	0.20		0.00		0.57	0.79	
- ·			22.39		0.40	0.57	0.40	0.57
Capping subsoi					- 1 D h 4 D			
Up to 6% each 1						-		
Equation is Su	bsoil P = 1	opsoil P *	0.53 + 5	subsoil Olv	*1.2 -1.2	2		
All Arable and (Grace up to	25 ma/l h	00001000	cubcoil				
All Arable and (0. 7		subsoil				
Affect on Subso	oil POM c	0. 7		subsoil				
Affect on Subso Regression St	oil P OM catistics	0. 7		subsoil				
Affect on Subso Regression St Multiple R	oil P OM ca tatistics 0.76	0. 7		subsoil				
Affect on Subso Regression St Multiple R R Square	oil P OM catistics 0.76 0.58	0. 7		subsoil				
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ	bil P OM ca tatistics 0.76 0.58 0.57	0. 7		subsoil				
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error	bil P OM ca tatistics 0.76 0.58 0.57 3.35	0. 7		subsoil				
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error Observations	bil P OM ca tatistics 0.76 0.58 0.57	0. 7		subsoil				
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error Observations	bil P OM ca tatistics 0.76 0.58 0.57 3.35	0. 7		subsoil				
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error	bil P OM ca tatistics 0.76 0.58 0.57 3.35	0. 7			gnificance	F		
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA	bil P OM ca tatistics 0.76 0.58 0.57 3.35 123	apped at 69	%			F		
Affect on Subso Regression St Multiple R R Square Adjusted R Squ Standard Error Observations	bil P OM ca tatistics 0.76 0.58 0.57 3.35 123 df	apped at 69	MS	F		F		
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual	bil P OM ca catistics 0.76 0.58 0.57 3.35 123 df 2	ss 1832.423	MS 916.2117	F		F		
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	bil P OM ca catistics 0.76 0.58 0.57 3.35 123 df 2 120 122	55 1832.423 1343.766 3176.19	<i>MS</i> 916.2117 11.19805	F 81.81884	3.85E-23			
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	bil P OM ca catistics 0.76 0.58 0.57 3.35 123 df 2 120 122 Coefficients	SS 1832.423 1343.766 3176.19 andard Err	MS 916.2117 11.19805 t Stat	F 81.81884 P-value	3.85E-23	Jpper 95%	ower 95.0%	
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total C Intercept	bil P OM ca catistics 0.76 0.58 0.57 3.35 123 df 2 120 122 Coefficients -0.43	SS 1832.423 1343.766 3176.19 andard Err 0.85	MS 916.2117 11.19805 <u>t Stat</u> -0.51	<i>F</i> 81.81884 <i>P-value</i> 0.61	3.85E-23	<i>Jpper 95%</i> 1.25	-2.11	1.25
Affect on Subsc Regression St Multiple R R Square Adjusted R Squ Standard Error Observations ANOVA Regression Residual Total	bil P OM ca catistics 0.76 0.58 0.57 3.35 123 df 2 120 122 coefficients	SS 1832.423 1343.766 3176.19 andard Err	MS 916.2117 11.19805 t Stat	F 81.81884 P-value	3.85E-23 Lower 95% -2.11 0.16	Jpper 95%	-2.11 0.16	

Affect on S			g/I, clay su					
Regression		Jivi capped	at 0%					
Multiple F	0.73							
R Square	0.73							
Adjusted I	0.53							
Standard I	2.93							
Observati	108							
Observati	100							
	df	SS	MS	F	gnificance	F		
Regressio	2	1037.722	518.861	60.4965	3.33E-18			
Residual	105	900.5547	8.576711					
Total	107	1938.277						
C	oefficients	andard Err	t Stat	P-value	lower 95%	Upper 95%o	wer 95.0%pp	oer 95.0
Intercept	0.81	0.79	1.03	0.31		2.38	-0.76	2.38
Sub OM%	0.14	0.24	0.57	0.57	-0.35	0.62	-0.35	0.62
Тор Р	0.36	0.03	10.95	0.00	0.30	0.43	0.30	0.43
Subsoil ON								
Equation is		5 0		+ Subso	il OM * 0.1	5 + 0.81		
All Arable				ht and me	dium loam	y subsoil		
Affect on S		n OM capp	bed at 6%					
Regression								
Multiple F	0.55							
R Square	0.30							
Adjusted I	0.29							
Standard I	11.88							
Observati	87							
ANOVA								
	df	SS	MS		gnificance	F		
Regressio	2	5162.222	2581.111	18.27316	2.58E-07			
Residual	84	11865.12	141.2515					
Total	86	17027.34						
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%o	wer 95.0%pp	oer 95.0
Intercept	-6.58	6.51	-1.01	0.32		6.37	-19.53	6.37
Sub OM%	1.51	0.98	1.55	0.13	-0.43	3.45	-0.43	3.45
Top P	0.74	0.42	5.74	0.00		0.99	0.48	0.99
		0.13	J./4	0.00	0.40			
NO liozauc	/I makes a				0.46	0.00		
		larger diffe	erence her	e?	il OM * 1.5			
Equation is	Subsoil F	larger diffe P = Topsoi	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable	Subsoil F and Grass	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m	Subsoil F and Grass ethod igno	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression	Subsoil F and Grass ethod igno Statistics	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F	Subsoil F and Grass ethod igno Statistics 0.53	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F R Square	Subsoil F and Grass ethod igno Statistics 0.53 0.28	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I	Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard [Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I	Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27	larger diffe P = Topsoi 35-80 mg/l	erence her HP * 0.74	e? + Subso	il OM * 1.5	- 6.6		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard [Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87	larger diffe = Topsoi 35-80 mg/l pred	erence her // P * 0.74 , sandy, lig	e? + Subso	il OM * 1.5 dium loam	- 6.6 ny subsoil		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard F Observati	Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df	larger diffe P = Topsol 35-80 mg/l pred SS	erence her I P * 0.74 , sandy, lig MS	e? + Subso tht and me	il OM * 1.5 dium loam gnificance	- 6.6 ny subsoil		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard I Observati Regressio	s Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df 1	larger diffe P = Topsol 35-80 mg/l pred SS 4823.623	MS 4823.623	e? + Subso	il OM * 1.5 dium loam gnificance	- 6.6 ny subsoil		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard F Observatio Regressio Regressio Residual	<i>Subsoil F</i> and Grass <u>ethod igno</u> <u>Statistics</u> 0.53 0.28 0.27 11.98 87 <i>df</i> 1 85	larger diffe 2 = Topsol 35-80 mg/l ored 55 4823.623 12203.72	erence her I P * 0.74 , sandy, lig MS	e? + Subso tht and me	il OM * 1.5 dium loam gnificance	- 6.6 ny subsoil		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard I Observati Regressio	s Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df 1	larger diffe P = Topsol 35-80 mg/l pred SS 4823.623	MS 4823.623	e? + Subso tht and me	il OM * 1.5 dium loam gnificance	- 6.6 ny subsoil		
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard I Observatio Regressio Regressio Residual Total	<i>Subsoil F</i> and Grass ethod igno <i>Statistics</i> 0.53 0.28 0.27 11.98 87 <i>df</i> 1 85 86	larger diffe 2 = Topsol 35-80 mg/l pred 55 4823.623 12203.72 17027.34	MS 4823.623 143.5732	e? + Subso tht and me <u>F</u> 33.59696	il OM * 1.5 dium loam <u>gnificance</u> 1.12E-07	- 6.6 Ny subsoil	Wer Q5 /00/pr	
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard F Observatio Regressio Residual Total	s Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df 1 85 86 0efficients	larger diffe P = Topsol 35-80 mg/l pred SS 4823.623 12203.72 17027.34 andard Err	MS 4823.623 143.5732	e? + Subso tht and me F 33.59696 P-value	il OM * 1.5 dium Ioam gnificance 1.12E-07 Lower 95%	- 6.6 iy subsoil F Upper 95%o	wer 95.09 pp	per 95.0
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard f Observati Cobservati Regressio Residual Total Total C Intercept	s Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df 1 85 86 coefficients -3.57	larger diffe 2 = Topsoi 35-80 mg/l pred 55 4823.623 12203.72 17027.34 andard Err 6.27	MS 4823.623 143.5732 <i>t Stat</i> -0.57	e? + Subso tht and me F 33.59696 P-value 0.57	<i>il OM * 1.5</i> dium Ioam gnificance 1.12E-07 Lower 95% -16.03	- 6.6 iy subsoil F <i>Upper 95%</i> 0 8.89	-16.03	<i>per 95.0</i> 8.89
Equation is All Arable OM and m Regression Multiple F R Square Adjusted I Standard F Observatio Regressio Residual Total	Subsoil F and Grass ethod igno Statistics 0.53 0.28 0.27 11.98 87 df 1 85 86 coefficients -3.57 0.75	larger diffe P = Topsol 35-80 mg/l pred SS 4823.623 12203.72 17027.34 andard Err	MS 4823.623 143.5732	e? + Subso tht and me F 33.59696 P-value	il OM * 1.5 dium Ioam gnificance 1.12E-07 Lower 95%	- 6.6 iy subsoil F Upper 95%o		per 95.0

All Arable		-			y 3003011			
		n OM cap	bed at 6%					
Regression								
Multiple F	0.92							
R Square	0.85							
Adjusted I	0.84							
Standard I	7.04							
Observati	22							
ANOVA						_		
	df	SS	MS		gnificance	F		
Regressio	2	5548.482	2774.241	55.99076	1.08E-08			
Residual	19	941.4158	49.5482					
Total	21	6489.898						
(oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	-43.88	6.55	-6.70	0.00	-57.58	-30.18	-57.58	-30.18
Sub OM%	9.70	1.71	5.68	0.00	6.13	13.27	6.13	13.27
Тор Р	1.07	0.14	7.71	0.00	0.78	1.36	0.78	1.36
Subsoil Of	/I makes a	large diffe	rence					
Equation is	s Subsoil I	P = Topso	IP* 1.07	+ Subsoi	IOM * 9.7	- 44		
All Arable	and Grass	35-80 mg/l	, heavy loa	am and cla	y subsoil			
OM ignore								
Regression								
Multiple F								
R Square	0.61							
Adjusted I	0.59							
Standard I	11.27							
Observati	22							
ANOVA	22							
	df	SS	MS	F	qnificance	F		
Regressio	 1	3947.695	3947.695	31.05727	1.87E-05	•		
Residual	20	2542.203	127.1102	51.05727	1.072 03			
Total	21	6489.898						
		0.001000						
0	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	-32.06	9.94	-3.22	0.00	-52.80	-11.32	-52.80	-11.32
	-32.00	9.94		0.00	-52.60	-11.52	52.00	-11.52
Тор Р	1.21	0.22	5.57	0.00	-52.80	-11.52	0.76	
Top P r2 is worse	1.21	0.22	5.57					
r2 is worse	1.21 ened now (0.22	5.57 ted	0.00				
r2 is worse Equation i	1.21 ened now (s Subsoil	0.22 DM is omit P = Topso	5.57 ted il P x 1.21	0.00 L - 32				
r2 is worse Equation i Woodland	1.21 ened now (s Subsoil 0-90 mg/l	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S	1.21 ened now (s Subsoil l 0-90 mg/l Subsoil P o	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression	1.21 ened now (s Subsoil l 0-90 mg/l Subsoil P o Statistics	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72 6.98	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72	0.22 DM is omit P = Topso topsoil P a	5.57 ted il P x 1.21 il textures	0.00 L - 32				
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72 6.98 50	0.22 DM is omit P = Topso topsoil P a n OM capp	5.57 ted il P x 1.21 ill textures bed at 6%	0.00	0.76	1.67		
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA	1.21 ened now (s Subsoil 60-90 mg/l 500501 P o 50073 0.72 6.98 50 6073 0.72	0.22 DM is omit P = Topso topsoil P a n OM capp	5.57 ted il P x 1.21 ill textures bed at 6%	0.00 L - 32	0.76	1.67		
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o 5tatistics 0.86 0.73 0.72 6.98 50 df 2	0.22 DM is omit P = Topso topsoil P a n OM capp SS 6270.163	5.57 ted il P x 1.22 ill textures bed at 6% <i>MS</i> 3135.081	0.00	0.76	1.67		
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio Regressio Residual	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o 5tatistics 0.86 0.73 0.72 6.98 50 df 2 47	0.22 DM is omit P = Topsol topsoil P a n OM capp SS 6270.163 2292.802	5.57 ted il P x 1.21 ill textures bed at 6%	0.00 L - 32	0.76	1.67		
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o 5tatistics 0.86 0.73 0.72 6.98 50 df 2	0.22 DM is omit P = Topso topsoil P a n OM capp SS 6270.163	5.57 ted il P x 1.22 ill textures bed at 6% <i>MS</i> 3135.081	0.00 L - 32	0.76	1.67		
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio Regressio Residual Total	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o 5tatistics 0.86 0.73 0.72 6.98 50 df 2 47 49	0.22 DM is omit P = Topsol topsoil P a n OM capp SS 6270.163 2292.802	5.57 ted il P x 1.22 ill textures bed at 6% <i>MS</i> 3135.081	0.00 L - 32 F 64.26581	0.76 gnificance 3.56E-14	1.67 F		1.67
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio Residual Total	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o 5tatistics 0.86 0.73 0.72 6.98 50 df 2 47 49	0.22 DM is omit P = Topso topsoil P a n OM cap SS 6270.163 2292.802 8562.965	5.57 ted il P x 1.22 ill textures bed at 6% <u>MS</u> 3135.081 48.78303	0.00 L - 32 F 64.26581	0.76 gnificance 3.56E-14	1.67 F	0.76	1.67
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio Residual Total C Intercept	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72 6.98 50 df 2 47 49 Coefficients -2.04	0.22 DM is omit P = Topso topsoil P a n OM capp 55 6270.163 2292.802 8562.965 andard Err 1.98	5.57 ted il P x 1.21 ill textures bed at 6% 3135.081 48.78303 t Stat -1.03	0.00 L - 32 F 64.26581 P-value	0.76 gnificance 3.56E-14 Lower 95% -6.02	1.67 F Upper 95% 1.94	0.76	1.67 per 95.03 1.94
r2 is worse Equation i Woodland Affect on S Regression Multiple F R Square Adjusted I Standard I Observati ANOVA Regressio Residual Total	1.21 ened now (s Subsoil 0-90 mg/l Subsoil P o Statistics 0.86 0.73 0.72 6.98 50 df 2 47 49 Coefficients	0.22 DM is omit P = Topso topsoil P a n OM cap SS 6270.163 2292.802 8562.965 andard Err	5.57 ted il P x 1.22 ill textures bed at 6% ms 3135.081 48.78303 t Stat	0.00 L - 32 F 64.26581 P-value 0.31	0.76 gnificance 3.56E-14	1.67 F Upper 95%	0.76	1.67

All data sandy t	o medium	loams clav	/s up to 35	mg/l P				
Effect of subsoi			,					
Regression St	tatistics							
Multiple R	0.02							
R Square	0.00							
Adjusted R Squ	0.00							
Standard Error	6.47							
Observations	383							
ANOVA								
	df	SS	MS	F	gnificance l	-		
Regression	1	7.47979	7.47979	0.178414	0.672978			
Residual	381	15972.95	41.92376					
Total	382	15980.43						
0	Coefficients	andard Err	t Stat	P-value	Lower 95%L	Jpper 95%o	wer 95.0%p	oer 95.0
Intercept	9.37	0.60	15.66	0.00	8.20	10.55	8.20	10.55
Redness 0-2	0.18	0.43	0.42	0.67	-0.66	1.02	-0.66	1.02
No correlation								
All data heavy l	oams and	clays up to	35 mg/l P					
Effect of subsoi								
Regression St	tatistics							
Multiple R	0.09							
R Square	0.01							
Adjusted R Squ	0.00							
Standard Error	4.77							
Observations	231.00							
ANOVA								
	df	SS	MS	F	gnificance l	-		
Regression	1	44.11041	44.11041	1.936335	0.165417			
Residual	229	5216.701	22.78036					
Total	230	5260.812						
					ļļ			
		andard Err				Jpper 95%o		
Intercept	6.10	0.56	10.83	0.00		7.21	4.99	7.21
Redness 0-2	0.52	0.38	1.39	0.17	-	1.27	-0.22	1.27
May be a positi	ve effect c	of redness	but very sn	nall (1 mg/	′I)			
Red 1 = 7.5YR								
Red 2 = 5YR or 2								
Red 0 = other co	olours							

Arable: inter-	-relationshi	os with top	osoil K					
	Method	Top Text	Top Stone	Тор ОМ%	Тор рН	Тор Р	Тор К	Тор Мд
Method	1.00							
Top. Text	-0.11	1.00						
Top. Stone	0.04	0.05	1.00					
Тор ОМ%	0.01	-0.05	-0.09	1.00				
Тор рН	-0.07	0.11	-0.06	-0.12	1.00			
Topsoil P	0.05	-0.32	-0.06	0.20	0.14	1.00		
Topsoil K	0.02	0.07	0.03	0.13	0.21	0.56	1.00	
Topsoil Mg	-0.01	0.52	-0.04	0.11	0.14	-0.19	0.09	1.0
High data poi	nts (>400 m	g K/l) exclu	uded					
There is no re	elationship	of topsoil k	and Avera	age Annual	Rainfall			
Leys: inter-re	lationships	with topso	oil K					
-	Method			Тор ОМ%	Тор рН	Тор Р	Тор К	Тор Мд
Method	1		•					
Top. Text	-0.03	1.00						
Top. Stone	0.02	-0.20	1.00					
Top OM%	0.18	0.18	0.00	1.00				
Тор рН	-0.08	0.01	-0.08	-0.03	1.00			
Topsoil P	0.01	-0.07	0.16	-0.01	0.32	1.00		
Topsoil K	-0.01	0.14	0.05	0.02	0.23	0.53	1.00	
Topsoil Mg	0.13	0.39	0.07	0.27	0.10	0.11	0.25	
High data poi	nts (>400 m	g K/l) exclu	uded					
Very weak po	ositive relati	onship of	topsoil K a	nd Average	Annual Ra	infall		
Extensive Gra	assland: inte	r-relation	shins with	tonsoil K				
	Method		-	Top OM%	Тор рН	Тор Р	Тор К	Тор Мд
Method	1.00	100 1010						<u>.</u>
Top. Text	0.00	1.00						
Top. Stone	0.10	-0.12						
Top OM%	0.08	0.01						
Тор рН	0.07	0.36			1.00			
Topsoil P	0.09	-0.26			-0.03	1.00		
Topsoil K	0.19	-0.04			0.19	0.63	1.00	
Topsoil Mg	0.02	0.45			0.30	-0.21	0.11	1.0
Very weak ne							0.11	1.0

11.5 Multiple correlation: factors affecting topsoil or Subsoil K

Arable: inter-	relationshi	os with sub	soil K							
	Method	Top Text	Тор К	Sub text	Sub stone	Sub OM	Sub pH	Sub P	Sub K	Sub Mg
Method	1									
Text. Top	-0.11	1.00								
Тор К	0.02	0.07	1.00							
Sub Text	-0.05	0.65	0.03	1.00						
Sub stone	0.18	-0.06	-0.01	-0.18	1.00					
Subsoil OM	0.25	-0.11	0.18	-0.02	0.18	1.00				
Subsoil pH	-0.12	0.28	0.20	0.21	-0.21	-0.12	1.00			
Subsoil P	0.12	-0.29	0.45	-0.22	0.06	0.37	0.03	1.00		
Subsoil K	0.07	0.12	0.77	0.09	0.10	0.25	0.15	0.48	1.00	
Subsoil Mg	-0.01	0.48	0.04	0.55	-0.15	0.00	0.18	-0.18	0.12	1.00
Data > 400 mg	K/l exclude	ed								
Leys: inter-re	· · ·			Sub toxt	Sub stone	Sub OM	Subpl	Sub P	Sub K	Sub Ma
Method	Method 1.00	Top Text	Тор К	SUDIEXI	Substone	SUD OIVI	Sub pH	SUDP	Sub K	Sub Mg
Text. Top	-0.03	1.00								
Тор К	-0.01	0.14	1.00							
Sub Text	-0.06	0.68	0.07	1.00						
Sub stone	0.23	-0.24	0.02	-0.30						
Subsoil OM	0.19	0.10	0.01	-0.01		1.00				
Subsoil pH	-0.04	0.10	0.23	0.08		-0.07	1.00			
Subsoil P	0.09	-0.21	0.30	-0.23		0.09	0.18	1.00		
Subsoil K	0.02	0.14	0.73	0.12		0.02	0.10	0.45	1.00	
Subsoil Mg	0.11	0.41	0.16	0.40		0.25	0.20	0.02	0.27	1.00
Extensive Gra	1				Cub stans	Sub OM	Cub all	Cub D	Cub K	Cub Ma
Method	Method 1	Top Text	Тор К	SUDIEXT	Sub stone	SUD UIVI	Sub pH	Sub P	Sub K	Sub Mg
		1.00								
Text. Top	0.00	1.00 -0.04	1.00							
Top K Sub Text	-0.19	-0.04	-0.19	1.00						
Sub rext		-0.30		-0.48						
Subsoil OM	0.18	-0.30	0.12 0.28	-0.48		1.00				
Subsoil Divi Subsoil pH	0.03	-0.08	0.28	0.00		-0.24	1.00			
Subsoil P	0.01	-0.26	0.04	-0.39		-0.24	-0.18	1.00		
Subsoil P	0.23	-0.26	0.51	-0.38		0.14	-0.18	0.42	1.00	
Subsoil Mg	-0.10	-0.04 0.29	0.89	-0.12		0.23	0.12	-0.26	0.07	1.00

11.6 Arable: Subsoil Organic Matter and stone category on topsoil: subsoil K

	-						-	
ARABLE SAND, LOA	AMY SAND	SUBSOILS	up to 240 n	ng K/l in to	opsoil			
Prediction of subs	oil K from t	opsoil K						
Regression Sta	itistics							
Multiple R	0.69							
R Square	0.48							
Adjusted R Square	0.46							
Standard Error	32.02							
Observations	40							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	35689.13	35689.13	34.79873	7.83E-07			
Residual	38	38972.31	1025.587					
Total	39	74661.44						
	Coefficients	andard Err	t Stat	Dyalua	1 ower 05%	l Innor 05%	ower 95.0%	nnor 05 09
Intercept	8.55	15.04	0.57	0.57		38.99	-21.89	<u>/38.99</u> 38.99
Topsoil K	0.64	0.11	5.90	0.00		0.86	0.42	0.86
Subsoil K = Topsoil		+ 9	5.50	0.00	0.42	0.80	0.42	0.80
5005011 K = 10p301	К X 0.04	1 9						
Arable sandy subs	oils - samp	ling metho	d included	1				
Regression Sta								
Multiple R	0.70							
R Square	0.49							
Adjusted R Square	0.46							
Standard Error	32.03							
Observations	40							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	36698.88	18349.44	17.88418				
Residual	37	37962.57	1026.015					
Total	39	74661.44						
	C	and and E	t Chart	Duralu	1	Una en 050/		
	Coefficients						ower 95.0%	
Intercept Method	9.78 11.46	15.09	0.65	0.52		40.35	-20.80	40.35
		11.55	0.99	0.33		34.85	-11.94	34.85
Topsoil K Sampling Method	0.58	0.12	4.73	0.00		0.83	0.33	0.83

Sampling Method has small significance (but only improves correlation by 0.1 - see below

Arable - sandy sub		oil OM incl	uded					
Regression Sta								
Multiple R	0.72							
R Square	0.52							
Adjusted R Square								
Standard Error	31.10							
Observations	40.00							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	38885.35	19442.67	20.10781	1.23E-06			
Residual	37	35776.1	966.9215					
Total	39	74661.44						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	oper 95.0
Intercept	0.90	15.20	0.06	0.95	-29.90	31.69	-29.90	31.69
Subsoil OM%	9.09	5.00	1.82	0.08	-1.04	19.23	-1.04	19.23
Topsoil K	0.57	0.11	5.15	0.00	0.35	0.80	0.35	0.80
Subsoil OM% impr	oves corre	ation and	P is signifi	cant				
Subsoil K = Topsoil			-	+ 1				
Arable - sandy sub	soils, subse	oil stone cl	ass include	ed				
Regression Sta	tistics							
Multiple R	0.72							
R Square	0.52							
Adjusted R Square	0.50							
Standard Error	31.06							
Observations	40							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	38972.83	19486.41	20.20245				
Residual	37	35688.62	964.5572					
Total	39	74661.44						
	Coefficients		t Stat				ower 95.0%	
Intercept	-2.95	15.86	-0.19	0.85		29.19	-35.08	29.19
Subsoil stone	10.50	5.69	1.85	0.07		22.03	-1.03	22.03
Topsoil K	0.65	0.11	6.18	0.00	0.44	0.86	0.44	0.86
Increase of one sto				-				
Subsoil K = Topsoil	K V 0 65 1	Cubcailata		10 5 3				
	K X U.UJ +	Subsoli sto	ne class x 1	10.5 - 3				
A								
Arable - sandy sub	soils, subs				ed			
Regression Sta	soils, subso tistics				ed			
<i>Regression Sta</i> Multiple R	soils, subso tistics 0.74				ed			
<i>Regression Sta</i> Multiple R R Square	soils, subso tistics 0.74 0.54				ed			
<i>Regression Sta</i> Multiple R R Square Adjusted R Square	soils, subso tistics 0.74 0.54 0.50				ed			
<i>Regression Sta</i> Multiple R R Square Adjusted R Square Standard Error	soils, subso tistics 0.74 0.54 0.50 30.81				ed			
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations	soils, subso tistics 0.74 0.54 0.50				ed			
<i>Regression Sta</i> Multiple R R Square Adjusted R Square Standard Error	soils, subso tistics 0.74 0.54 0.50 30.81 40	oil OM% ar	nd stone cl	ass includ				
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	soils, subso tistics 0.74 0.54 0.50 30.81 40 df	oil OM% ar	nd stone cl	ass includ	gnificance	F		
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	soils, subse tistics 0.74 0.54 0.50 30.81 40 df 3	SS 40499.1	MS 13499.7	ass includ	gnificance	F		
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regitual	soils, subse tistics 0.74 0.54 0.50 30.81 40 df 3 36	SS 40499.1 34162.35	nd stone cl	ass includ	gnificance	F		
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	soils, subse tistics 0.74 0.54 0.50 30.81 40 df 3	SS 40499.1	MS 13499.7	ass includ	gnificance	F		
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	soils, subse tistics 0.74 0.54 0.50 30.81 40 df 3 36 39	SS 40499.1 34162.35 74661.44	MS 13499.7 948.9541	<i>F</i> 14.22587	gnificance 2.84E-06		ower 95.0 ⁹	oper 95.0
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	soils, subse tistics 0.74 0.54 0.50 30.81 40 df 3 36	55 40499.1 34162.35 74661.44	MS 13499.7 948.9541 t Stat	<i>F</i> 14.22587	gnificance 2.84E-06 Lower 95%	Upper 95%	ower 95.09/ -37.89	
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	soils, subso tistics 0.74 0.50 30.81 40 df 3 36 39 Coefficients: -5.69	55 40499.1 34162.35 74661.44 andard Err 15.88	MS 13499.7 948.9541 t Stat -0.36	<i>F</i> 14.22587 <i>P-value</i> 0.72	<i>gnificance</i> 2.84E-06 <i>Lower 95%</i> -37.89	Upper 95% 26.52	-37.89	26.52
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept Subsoil OM%	soils, subso tistics 0.74 0.50 30.81 40 df 33 36 39 Coefficients: -5.69 6.70	55 40499.1 34162.35 74661.44 andard Err 15.88 5.28	MS 13499.7 948.9541 t Stat -0.36 1.27	<i>F</i> 14.22587 <i>P-value</i> 0.72 0.21	<i>gnificance</i> 2.84E-06 <i>Lower 95%</i> -37.89 -4.01	<i>Upper 95%</i> 26.52 17.41	-37.89 -4.01	26.52 17.41
Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	soils, subso tistics 0.74 0.50 30.81 40 df 3 36 39 Coefficients: -5.69	55 40499.1 34162.35 74661.44 andard Err 15.88	MS 13499.7 948.9541 t Stat -0.36	<i>F</i> 14.22587 <i>P-value</i> 0.72	<i>gnificance</i> 2.84E-06 <u>Lower 95%</u> -37.89 -4.01 -4.36	Upper 95% 26.52	-37.89	26.52

Relationship with s	subsoil K							
Regression Sta	tistics							
Multiple R	0.84							
R Square	0.70							
Adjusted R Square	0.70							
Standard Error	27.19							
Observations	76							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	128050.1	128050.1	173.1914	4.57E-21			
Residual	74	54712.33	739.3558					
Total	75	182762.4						
							05.00	
	Coefficients		t Stat				ower 95.0%p	
Intercept	4.18	8.05	0.52	0.60			-11.86	20.23
Topsoil K	0.71	0.05	13.16	0.00	0.61	0.82	0.61	0.82
Subsoil K = Topsoil	K x 0.71	+ 4						
Arable light loam s		iclusion of	sampling	method				
Regression Sta								
Multiple R	0.84							
R Square	0.71							
Adjusted R Square	0.70							
Standard Error	26.98							
Observations	76							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	2	129625.6	64812.82	89.04068	2.62E-20			
Residual	73	53136.79	727.9012					
Total	75	182762.4						
	Coefficients	andard Err	t Stat	D value	1 ower 05%	Upper 05%	ower 95.0%p	nar 05 0
Intercept	-2.08	9.06	-0.23	0.82		15.96	-20.13	15.96
Method	9.69	6.59	-0.23	0.82		22.82	-20.13	22.82
Topsoil K	0.71	0.05	13.23	0.13		0.82	0.60	0.82
Method may be sig	, nin cant ar		iverage inc	lease with		u mg/i as a	ugermetho	1
Arable Light Loam	subsoils - i	nclusion o	f Subsoil o	rganic mat	tor %			
Regression Sta		nerasion o	50030110	iganic mat				
Multiple R	0.85							
	0.85							
R Square Adjusted R Square	0.72							
Standard Error	-							
Observations	26.29							
	76							
ANOVA	10	~~		-	· · · · · · · · ·			
<u> </u>	df	SS	MS		gnificance	٢		
Regression		132305.7	66152.84	95.70884	3.96E-21			
Residual		50456.75	691.1883					
Total	75	182762.4						
	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
C				0.33			-28.09	9.67
	-9.21	9.47	-0.97	0.55				
C Intercept Subsoil OM%		9.47 3.20	-0.97 2.48	0.33			1.56	14.31
Intercept	-9.21				1.56			14.31 0.81

Regression Sta	tistics							
Multiple R	0.85							
R Square	0.72							
Adjusted R Square	0.71							
Standard Error	26.69							
Observations	76							
ANOVA								
	df	SS	MS	F	gnificance l	-		
Regression	2	130770.6	65385.3	91.80536	1.18E-20			
Residual	73	51991.81	712.2166					
Total	75	182762.4						
	oefficients	andard Err	t Stat	P-value	ower 95%	Jpper 95%o	wer 95 Man	ner 95 N
Intercept	-4.73	9.13	-0.52	0.61	-22.92	13.46	-22.92	13.46
Subsoil stone	8.88	4.55	1.95	0.01	-0.18	17.94	-0.18	17.94
Topsoil K	0.71	0.05	13.21	0.00	0.60	0.81	0.60	0.81
Increase of one sto	-		-		0.00	0.01	0.00	0.01
NUMBER $= 1000001$		Subcoil cti	nna class v	88 5				
Subsoil K = Topsoil	K X U. 71 +	Subsoil st	one class x	8.8 - 5				
					ne class			
Arable Light Loam	subsoils - i				ne class			
Arable Light Loam s Regression Sta	subsoils - i tistics				ne class			
Arable Light Loam s Regression Star Multiple R	subsoils - i tistics 0.86				ne class			
Arable Light Loam s Regression Star Multiple R R Square	subsoils - i tistics 0.86 0.73				ne class			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square	subsoils - i tistics 0.86 0.73 0.72				ne class			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error	subsoils - i tistics 0.86 0.73 0.72 26.04				ne class			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations	subsoils - i tistics 0.86 0.73 0.72				ne class			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error	subsoils - i tistics 0.86 0.73 0.72 26.04 76	nclusion o		M and stor				
Arable Light Loam s Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	subsoils - i tistics 0.86 0.73 0.72 26.04	nclusion of	f susboil O MS	M and stor	ne class gnificance 1 1.35E-20			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df	nclusion o	f susboil O	M and stor	gnificance			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3	nclusion of 	f susboil O MS 44648.24	M and stor	gnificance			
Arable Light Loam s Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3 72 75	SS 133944.7 48817.72 182762.4	<i>MS</i> 44648.24 678.0239	M and stor	gnificance 1.35E-20			
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3 72 75 50efficients	SS 133944.7 48817.72 182762.4 andard Err	f susboil O MS 44648.24 678.0239 t Stat	<i>F</i> 65.85054 <i>P-value</i>	gnificance 1.35E-20 Lower 95%	Ipper 95%o		
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3 72 75 coefficients -14.64	SS 133944.7 48817.72 182762.4 andard Err 10.01	f susboil O MS 44648.24 678.0239 t Stat -1.46	M and stor <i>F</i> 65.85054 <i>P-value</i> 0.15	gnificance 1.35E-20 Lower 95% -34.60	<i>Jpper <u>9</u>5%0</i> 5.32	-34.60	5.32
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept Subsoil OM%	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3 72 75 <i>coefficients</i> -14.64 6.98	SS 133944.7 48817.72 182762.4 andard Err 10.01 3.23	f susboil O MS 44648.24 678.0239 t Stat -1.46 2.16	M and stor <i>F</i> 65.85054 <i>P-value</i> 0.15 0.03	gnificance 1.35E-20 Lower 95% -34.60 0.55	<i>Jpper 95%0</i> 5.32 13.41	-34.60 0.55	5.32 13.41
Arable Light Loam s Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	subsoils - i tistics 0.86 0.73 0.72 26.04 76 df 3 72 75 coefficients -14.64	SS 133944.7 48817.72 182762.4 andard Err 10.01	f susboil O MS 44648.24 678.0239 t Stat -1.46	M and stor <i>F</i> 65.85054 <i>P-value</i> 0.15	gnificance 1.35E-20 Lower 95% -34.60	<i>Jpper <u>9</u>5%0</i> 5.32	-34.60	

Relationship with	subsoil K							
Regression Sta	tistics							
Multiple R	0.73							
R Square	0.54							
Adjusted R Square	0.53							
Standard Error	35.90							
Observations	76							
ANOVA								
/	df	SS	MS	F	gnificance	F		
Regression	1	110578.8	110578.8	, 85.8227	5.28E-14	,		
Residual	- 74	95345.77	1288.456	05.0227	3.202 11			
Total	75	205924.6	1200.430					
Total	75	203324.0						
0	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%p	per 95.0
Intercept	15.00	10.94	1.37	0.17	-6.80	36.81	-6.80	36.81
Topsoil K	0.69	0.07	9.26	0.00	0.54	0.84	0.54	0.84
Subsoil K = Topsoil	K x 0.69	+ 15						
Arable medium su	bsoils - inc	lusion of s	ampling m	ethod				
Regression Sta	tistics							
Multiple R	0.73							
R Square	0.54							
Adjusted R Square	0.53							
Standard Error	36.10							
Observations	76							
ANOVA	,,,							
	df	SS	MS	F	anificanco	E		
Degradaien	2		-	<i>r</i> 42.5084	gnificance	Γ		
Regression	_	110792.3	55396.16	42.5084	5.74E-13			
Residual	73	95132.24	1303.181					
Total	75	205924.6						
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%p	per 95.0
Intercept	16.66	11.75	1.42	0.16	-6.75	40.07	-6.75	40.07
Sampling method	-3.36	8.29	-0.40	0.69	-19.89	13.17	-19.89	13.17
Topsoil K	0.69	0.07	9.20	0.00	0.54	0.84	0.54	0.84
Method not signifi	cant							
Arable medium su	bsoils - inc	lusion of s	usboil OM					
Regression Sta	tistics							
Multiple R	0.74							
R Square	0.54							
Adjusted R Square	0.53							
Standard Error	35.86							
Stanuaru Error								
Observations	76							
	76							
Observations		SS	MS	F	anificance	F		
Observations ANOVA	df	SS 112060.7			gnificance 3.51E-13	F		
Observations ANOVA Regression	df 2	112060.7	56030.34			F		
Observations ANOVA Regression Residual	<i>df</i> 2 73	112060.7 93863.89				F		
Observations ANOVA Regression	df 2	112060.7 93863.89	56030.34			F		
Observations ANOVA Regression Residual Total	<i>df</i> 2 73 75	112060.7 93863.89	56030.34	43.57602	3.51E-13		ower 95.0%	per 95.0
Observations ANOVA Regression Residual Total	<i>df</i> 2 73 75	112060.7 93863.89 205924.6	56030.34 1285.807	43.57602	3.51E-13		ower 95.0%p -25.78	per <u>95.0</u> 33.86
Observations ANOVA Regression Residual Total	df 2 73 75 Coefficients	112060.7 93863.89 205924.6 andard Err	56030.34 1285.807 t Stat	43.57602 <i>P-value</i>	3.51E-13 Lower 95% -25.78	Upper 95%d		
Observations ANOVA Regression Residual Total C Intercept	<i>df</i> 2 73 75 <i>Coefficients</i> 4.04	112060.7 93863.89 205924.6 andard Err 14.96	56030.34 1285.807 <i>t Stat</i> 0.27	43.57602 <i>P-value</i> 0.79	3.51E-13 Lower 95% -25.78 -5.20	Upper 95% 33.86	-25.78	33.86

Regression Sta	tistics							
Multiple R	0.74							
R Square	0.55							
Adjusted R Square	0.54							
Standard Error	35.61							
Observations	76							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	113360.8	56680.39	44.70072	2.11E-13			
Residual	73	92563.79	1267.997					
Total	75	205924.6						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.0%p	per 95.0
Intercept	6.51	12.28	0.53	0.60		30.98	-17.96	30.98
Subsoil stone	8.45	5.70	1.48	0.14		19.81	-2.92	19.81
Topsoil K	0.69	0.07	9.35	0.00		0.84	0.54	0.84
Subsoil K = Topsoil		Subsoil st						
Arable medium sul	bsoils - inc	lusion of s	usboil OM	and subso	il stones			
Regression Sta	tistics							
Multiple R	0.75							
R Square	0.56							
Adjusted R Square	0.54							
Standard Error	35.53							
Observations	76							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	3	115043.4	38347.8	30.3808	8.41E-13			
Residual	72	90881.15	1262.238					
Total	75	205924.6						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.0%p	per 95.0%
Intercept	-5.50	16.07	-0.34	0.73		26.54	-37.53	26.54
Subsoil OM%	6.48	5.61	1.15	0.25	-4.71	17.66	-4.71	17.66
Subsoil stone	8.76	5.70	1.54	0.13	-2.60	20.11	-2.60	20.11
Topsoil K	0.69	0.07	9.36	0.00	0.54	0.83	0.54	0.83

Affect of topsoil K	on subsoil	К						
Regression Sta	tistics							
Multiple R	0.68							
R Square	0.47							
Adjusted R Square	0.46							
Standard Error	27.90							
Observations	83							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	55616.62	55616.62	71.46033	9.57E-13			
Residual	81	63041.22	778.2867					
Total	82	118657.8						
	oefficients		t Stat		Lower 95%			
Intercept	49.88	8.39	5.94	0.00		66.57		66.57
Topsoil K	0.43	0.05	8.45	0.00	0.33	0.53	0.33	0.53
Subsoil K = Topsoil	< x 0.43	+ 50						
Arable heavy loam		uhanila in	ducion of		a a th a d			
		ubsolis - In	clusion of	sampling	methoa			
Regression Sta								
Multiple R	0.72							
R Square	0.51							
Adjusted R Square	0.50							
Standard Error	26.91							
Observations	83							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	2	60713.74	30356.87	41.91194	3.54E-13			
Residual	80	57944.1	724.3013					
Total	82	118657.8						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	oper 95.0
Intercept	38.92	9.09	4.28	0.00		57.01	20.84	57.01
Sampling method	15.83	5.97	2.65	0.01		27.71	3.95	27.71
Topsoil K	0.45	0.05	9.03	0.00		0.55	0.35	0.55
Method is highly si								0.00
	8		, e <u>10</u> 8, i i			, auger		
Arable heavy loam	and clay s	ubsoils - in	clusion of	subsoil Of	VI%			
Regression Sta								
Multiple R	0.69							
R Square	0.48							
Adjusted R Square	0.46							
Standard Error	27.90							
Observations	83							
ANOVA								
/	df	SS	MS	F	qnificance	F		
Regression	,	56370.56	28185.28	36.20036		•		
Residual		62287.28	778.591	30.20030	0.071-12			
nesiuuai	82		, , 0.591					
Total	02	110037.0						
Total			+ C+++	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0
	oefficients	andard Err	t Stat					
	<i>oefficients:</i> 41.96	andard Err 11.63	t Stat 3.61	0.00	18.82	65.10	18.82	65.10
C						65.10 13.12		65.10 13.12
C Intercept	41.96	11.63	3.61	0.00	-4.44		-4.44	

Regression Stat	tistics							
Multiple R	0.69							
R Square	0.48							
Adjusted R Square	0.47							
Standard Error	27.77							
Observations	83							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	56977.61	28488.8	36.95032	4.31E-12			
Residual	80	61680.23	771.0029					
Total	82	118657.8						
		and and E	4 64-4	Durala	050/	1	05.00	
		andard Err					ower 95.0%p	
Intercept	54.10	8.94	6.05	0.00		71.89	36.32	71.89
Subsoil stones	-6.22	4.68	-1.33	0.19		3.10	-15.55	3.10
Topsoil K	0.43	0.05	8.46	0.00	0.33	0.53	0.33	0.53
Negative affect of								
Subsoil K = Topsoil	K x 0.43 -	Subsoil sto	ne class y l	67 + 51				
		5055011 500	The clubb X	0.2 1 54				
Arable heavy loam	and clay s				M and ston	e class		
Arable heavy loam Regression Sta	and clay s tistics				M and ston	e class		
Arable heavy loam <i>Regression Sta</i> Multiple R	and clay s tistics 0.70				M and ston	e class		
Arable heavy loam Regression Sta Multiple R R Square	and clay s tistics 0.70 0.49				M and ston	e class		
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square	and clay s tistics 0.70 0.49 0.47				M and ston	e class		
Arable heavy loam Regression Stat Multiple R R Square Adjusted R Square Standard Error	and clay s tistics 0.70 0.49 0.47 27.70				M and ston	e class		
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square	and clay s tistics 0.70 0.49 0.47				M and ston	e class		
Arable heavy loam Regression Stat Multiple R R Square Adjusted R Square Standard Error	and clay s tistics 0.70 0.49 0.47 27.70			subsoil O	M and ston	e class		
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square Standard Error Observations	and clay s tistics 0.70 0.49 0.47 27.70 83 df	ubsoils - in	clusion of	subsoil O	M and ston			
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square Standard Error Observations	and clay s tistics 0.70 0.49 0.47 27.70 83 df	ubsoils - in	clusion of	subsoil O	gnificance			
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	and clay s tistics 0.70 0.49 0.47 27.70 83 df	ubsoils - in	clusion of	subsoil O	gnificance			
Arable heavy loam Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3	ubsoils - in 	<i>clusion of</i> <i>MS</i> 19354.54	subsoil O	gnificance			
Arable heavy loam Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3 79 82	<i>ss</i> 58063.63 60594.22 118657.8	<i>MS</i> 19354.54 767.0154	subsoil O F 25.23358	gnificance 1 1.5E-11	F		nar 05 0
Arable heavy loam Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3 79 82 50 efficients	<u>SS</u> 58063.63 60594.22 118657.8	MS 19354.54 767.0154 t Stat	subsoil O F 25.23358 P-value	gnificance 1.5E-11 Lower 95%	F Jpper 95%	ower 95.09 p. 21 70	
Arable heavy loam Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3 79 82 50 efficients 45.04	ubsoils - in SS 58063.63 60594.22 118657.8 andard Err 11.72	<i>MS</i> 19354.54 767.0154 <i>t Stat</i> 3.84	subsoil O F 25.23358 <u>P-value</u> 0.00	gnificance 1.5E-11 Lower 95% 21.70	F Jpper 95%c 68.38	21.70	68.38
Arable heavy loam Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept Subsoil OM%	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3 79 82 50efficients 45.04 5.26	ubsoils - in SS 58063.63 60594.22 118657.8 andard Err 11.72 4.42	Clusion of MS 19354.54 767.0154 t Stat 3.84 1.19	subsoil O <i>F</i> 25.23358 <i>P-value</i> 0.00 0.24	gnificance 1.5E-11 Lower 95%! 21.70 -3.54	F Jpper 95% 68.38 14.06	21.70 -3.54	68.38 14.06
Arable heavy loam Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	and clay s tistics 0.70 0.49 0.47 27.70 83 df 3 79 82 50 efficients 45.04	ubsoils - in SS 58063.63 60594.22 118657.8 andard Err 11.72	<i>MS</i> 19354.54 767.0154 <i>t Stat</i> 3.84	subsoil O F 25.23358 <u>P-value</u> 0.00	gnificance 1.5E-11 <u>Lower 95%</u> 21.70 -3.54 -16.40	F Jpper 95%c 68.38	21.70	68.38

11.7 Grassland: effect of Subsoil OM and stone category on topsoil: subsoil K

GRASS, SAND SU	BSOILS							
Regression Sta	itistics							
Multiple R	0.81							
R Square	0.65							
Adjusted R Squa	0.64							
Standard Error	25.98							
Observations	28							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	32804.62	32804.62	48.61476	2.11E-07			
Residual	26	17544.47	674.7873					
Total	27	50349.09						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%	pper 95.0%
Intercept	8.32	9.12	0.91	0.37	-10.43		-10.43	27.07
Topsoil K	0.58	0.08	6.97	0.00	0.41	0.75	0.41	0.75
Subsoil K = Topso	il K x 0.58	3 + 8						
Grass, Sand subs	oile influ	anso of co	malina ma	thad				
Regression Sto		lence of sa	mpring me	thoa				
Multiple R	0.83							
R Square	0.85							
Adjusted R Squa	0.67							
Standard Error	24.88							
Observations	24.00							
ANOVA				-		E		
ANOVA	df	SS	MS	F	gnificance	r I		
ANOVA Regression	,	SS 34876.23	-		<i>gnificance</i> 3.93E-07			
	,	34876.23	17438.11					
Regression Residual	2 25	34876.23	17438.11					
Regression Residual Total	2 25 27	34876.23 15472.87 50349.09	17438.11	28.17531	3.93E-07		ower 95.0%	pper 95.0%
Regression Residual Total	2 25 27	34876.23 15472.87	17438.11 618.9146	28.17531	3.93E-07	Upper 95%d	ower 95.09 -10.30	09 pper 95.09 25.71
Regression Residual Total	2 25 27 pefficients	34876.23 15472.87 50349.09 andard Err	17438.11 618.9146 <i>t Stat</i>	28.17531 P-value	3.93E-07 Lower 95% -10.30	Upper 95%c 25.71		

Regression Sta	tistics							
Multiple R	0.81							
R Square	0.65							
Adjusted R Squa	0.63							
Standard Error	26.41							
Observations	28							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	32913.88	16456.94	23.59727				
Residual	25	17435.21	697.4085					
Total	27	50349.09						
		andard Err					ower 95.0% p	-
Intercept	5.96	11.03	0.54	0.59		28.67	- 16. 75	28.67
Subsoil OM%	1.73	4.38	0.40	0.70		10.74	- 7.28	10.74
Topsoil K	0.57	0.09	6.67	0.00	0.39	0.75	0.39	0.75
Inclusion of subs	oil OM do	es not help	o correlatio	on				
Grass, Sand subs	oils - influ	ence of su	bsoil stone	e class				
Regression Sta	tistics							
Multiple R	0.83							
R Square	0.69							
Adjusted R Squa	0.67							
Standard Error	24.90							
Observations	28							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	34845.97	17422.98		-			
Residual	25	15503.13	620.125	20.05552	1.052 07			
Total	27	50349.09	020.125					
	pefficients	andard Err	t Stat	P-value		Upper 95%	ower 95.0% p	per 95.0
Intercept	2.37	9.34	0.25	0.80	- 16.87	21.60	- 16.87	21.60
Subsoil stone	12.00	6.61	1.81	0.08	- 1.62	25.62	- 1.62	25.62
Topsoil K	0.56	0.08	6.97	0.00	0.39	0.72	0.39	0.72
Improvement in	correlatio	n						
Subsoil K = Topso	oil K + s	ubsoil ston	e class x 12	2 + 2.4				
Grass, Sand subs	oils - influ	ence of su	bsoil OM a	ind stone	class			
Regression Sta								
Multiple R	0.83							
R Square	0.70							
Adjusted R Squa	0.66							
Standard Error	25.24							
Observations	28							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	3	35055.3	11685.1	18.33701				
Residual	24	15293.79			00			
Total	27	50349.09						
C.	oefficiente	andard Err	t Stat	P-value	Ower 95%	Inner 95%	ower 95.0% p	ner 95 A
Intercept	-1.08	11.22	-0.10	0.92		22.07	-24.24	22.07
Subsoil OM%	2.41	4.20	0.57	0.52		11.07	-6.26	11.07
			1.83	0.57		26.22	- 0. 20	26.22
Subsoil stopp	10 20							
Subsoil stone Topsoil K	12.33 0.55	6.73 0.08	6.64	0.00		0.72	0.38	0.72

GRASS, LIGHT LO	AM SUBS	DILS						
Regression Sta	atistics							
Multiple R	0.73							
R Square	0.53							
Adjusted R Squa	0.53							
Standard Error	25.68							
Observations	93							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1		67729.41	, 102.6999		,		
Residual	91	60013.44	659.4883	102.0555	1.346 10			
Total	92	127742.8	055.4005					
	_							
		andard Err	t Stat				wer 95.0%p	
Intercept	22.65	5.36	4.23	0.00	12.01	33.29	12.01	33.29
Topsoil K	0.48	0.05	10.13	0.00	0.39	0.58	0.39	0.58
Subsoil K = Topso	oil K x 0.48	3 + 23						
Grass, light loam	subsoils -	effect of s	ampling m	nethod				
Regression Sto								
Multiple R	0.73							
R Square	0.53							
Adjusted R Squa	0.52							
Standard Error	25.72							
Observations	93							
ANOVA								
ANOVA	df	SS	MS	F	gnificance	E		
Pagrassian	<u>uj</u> 2	68188.4	34094.2	<i>۲</i> 51.5239		Г		
Regression Residual	2 90	59554.45	661.7161	51.5259	1.226-15			
Total	90	127742.8	001.7101					
	-							
		andard Err					ower 95.0%p	
Intercept	20.11	6.17	3.26	0.00		32.37	7.85	32.37
Method	5.07	6.09	0.83	0.41		17.18	-7.03	17.18
Topsoil K	0.47	0.05	9.54	0.00	0.38	0.57	0.38	0.57
Weak influence	of samplin	ig method,	possibly 5	mg/l				
Grass, light loam	subsoils -	subsoil OI	V effect					
Regression Sto								
Multiple R	0.73							
R Square	0.53							
Adjusted R Squa	0.52							
Standard Error	25.77							
Observations	93							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	67989.35	33994.68	, 51.20237				
Residual	90	59753.5	663.9278	51.20207				
Total	92	127742.8	003.3278					
		andard Err	t Stat	P-value	10wer 05%	Inner 05%	ower 95.0%p	nor 05 0
Ĺ	,,		t Stat 2.84	<i>P-value</i> 0.01		33.73	5.99	23.73 per 95.0
Intercort	10 06				5.99	33./3	5.99	55.75
Intercept	19.86	6.98					2 01	E E0
Intercept Subsoil OM% Topsoil K	19.86 1.34 0.48	6.98 2.14 0.05	0.63 10.07	0.53	-2.91	5.59 0.58	-2.91 0.39	5.59 0.58

Grass, light loam	subsoils -	subsoil st	ones effec	t				
Regression Sto	atistics							
Multiple R	0.73							
R Square	0.53							
Adjusted R Squa	0.52							
Standard Error	25.70							
Observations	93							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	68310.29	34155.14	51.72187	1.11E-15			
Residual	90	59432.56	660.3618					
Total	92	127742.8						
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	19.92	6.10	3.27	0.00	7.80	32.04	7.80	32.04
Subsoil stones	3.09	3.30	0.94	0.35	-3.46	9.65	-3.46	9.65
Topsoil K	0.48	0.05	10.03	0.00	0.39	0.58	0.39	0.58
Weak effect but	each stone	e class asso	ciated wit	h 3 mg/l ir	ncrease in s	ubsoil K		

Regression St	atistics							
Multiple R	0.82							
R Square	0.67							
Adjusted R Squa								
Standard Error	24.19							
Observations	95							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	108231.5	108231.5	184.9688				
Residual	93	54417.47						
Total	94	162649						
	Coefficients		t Stat				ower 95.0%p	
Intercept	11.53	5.17	2.23	0.03	1.28	21.79	1.28	21.79
Topsoil K	0.67	0.05	13.60	0.00	0.57	0.77	0.57	0.7
Subsoil K = Topso								
No significant di		•	s when lig	ht loam to	psoils were	isolated f	rom mediur	n topso
Subsoil K = Topso								
Subsoil K = Topso	oil K x 0.68	3 + 10						
Grass modium s	ubsoils - al	lowance f	or compline	method				
Grass medium s		lowance fo	or sampling	g method				
Regression St	atistics	lowance fo	or sampling	g method				
<i>Regression St</i> Multiple R	atistics 0.82	lowance fo	or sampling	g method				
<i>Regression St</i> Multiple R R Square	atistics 0.82 0.67	lowance fo	or samplin	g method				
Regression St Multiple R R Square Adjusted R Squa	atistics 0.82 0.67 0.66	lowance fo	or samplinį	g method				
Regression St Multiple R R Square Adjusted R Squa Standard Error	atistics 0.82 0.67 0.66 24.22	lowance fo	or samplin	g method				
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations	atistics 0.82 0.67 0.66	lowance fo	or sampling	g method				
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations	atistics 0.82 0.67 0.66 24.22 95				anificance			
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA	atistics 0.82 0.67 0.66 24.22	SS 108674.8	MS	F	gnificance 9.18E-23	F		
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression	atistics 0.82 0.67 0.66 24.22 95 df 2	<u>SS</u> 108674.8	MS 54337.41	F		F		
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA	atistics 0.82 0.67 0.66 24.22 95 df	55	MS	F		F		
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual	atistics 0.82 0.67 0.66 24.22 95 df 2 92	<u>SS</u> 108674.8 53974.19	MS 54337.41	F		F		
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	atistics 0.82 0.67 0.66 24.22 95 df 2 92	<u>SS</u> 108674.8 53974.19 162649	<i>MS</i> 54337.41 586.676	F 92.61911	9.18E-23		ower 95.09	per 95.0
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	atistics 0.82 0.67 0.66 24.22 95 df 2 95 df 2 92 92 94	<u>SS</u> 108674.8 53974.19 162649	<i>MS</i> 54337.41 586.676	F 92.61911	9.18E-23 Lower 95%		ower 95.0% -1.05	
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	atistics 0.82 0.67 0.66 24.22 95 df 2 92 92 94 Coefficients	<u>SS</u> 108674.8 53974.19 162649 andard Err	MS 54337.41 586.676 t Stat	F 92.61911 P-value	9.18E-23 Lower 95% -1.05	Jpper 95%	·	<i>per 95.C</i> 20.83 14.39

	ubsolis - Il	nclusion of	subsoil O	M%				
Regression Sta	atistics							
Multiple R	0.82							
R Square	0.67							
Adjusted R Squa	0.66							
Standard Error	24.30							
Observations	95							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	108312.1	54156.05	91.69377	1.25E-22			
Residual	92	54336.91	590.6186					
Total	94	162649						
	oefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.0%p	
Intercept	13.03	6.58	1.98	0.05	-0.05	26.10	-0.05	26.10
Subsoil OM%	-0.98	2.66	-0.37	0.71	-6.27	4.30	-6.27	4.30
Topsoil K	0.67	0.05	13.36	0.00	0.57	0.77	0.57	0.77
Subsoil OM not s	ignificant							
Grass, medium s	ubsoils - iı	nclusion of	subsoil st	one catego	ory			
Regression Sta					_			
Multiple R	0.82							
R Square	0.67							
Adjusted R Squa	0.66							
Standard Error	24.32							
Observations	95							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	108231.7	54115.85	91.49031	1.34E-22			
Residual	92	54417.32	591.4926					
Total	94	162649						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	095.0%
Intercept	11.50	5.58	2.06	0.04	0.42	22.58	0.42	22.58
Subsoil stone	0.06	3.58	0.02	0.99	-7.05	7.17	-7.05	7.17
Topsoil K	0.67	0.05	13.47	0.00	0.57	0.77	0.57	0.77

Regression Sta	itistics							
Multiple R	0.63							
R Square	0.39							
Adjusted R Squa	0.38							
Standard Error	30.35							
Observations	58							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	33149.78	33149.78	35.98885				
Residual	56	51582.3	921.1125					
Total	57	84732.08						
Co	cefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0% p	per 95.0
Intercept	32.41	9.65	3.36	0.00	13.09	51.73	13.09	51.73
Topsoil K	0.47	0.08	6.00	0.00	0.31	0.63	0.31	0.63
Subsoil K = Topso	il K x 0.47	7 + 32						
Grass heavy loan	n subsoils	- effect of	sampling r	nethod				
Regression Sta	itistics							
Multiple R	0.63							
R Square	0.40							
Adjusted R Squa	0.37							
Standard Error	30.52							
Observations	58							
ANOVA								
	df	SS	MS	F	qnificance	E		
Pagrossion	2	33507.4	16753.7	17.98847	<u> </u>	Γ		
Regression Residual	2 55		931.3577	17.90047	9.70E-07			
			951.5577					
Total	57	84732.08						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	29.93	10.49	2.85	0.01		50.96	8.91	50.96
Method	5.06	8.17	0.62	0.54		21.43	-11.31	21.43
Topsoil K	0.47	0.08	5.89	0.00		0.63	0.31	0.63
Sampling method	.			0.00	0.01	0.00	0.01	0.00
Sampling method		akimuch						
Grass heavy loan	n subsoils	- effect of	subsoil ON	٨%				
Regression Sta		enceror	Subsenen					
Multiple R	0.63							
R Square	0.63							
Adjusted R Squa	0.38							
Standard Error	30.33							
Observations	58							
ANOVA		-						
	df	SS	MS		gnificance	F		
Regression	2		17068.68	18.55485	6.94E-07			
Residual	55		919.904					
Total	57	84732.08						
C	nefficiente	andard Err	t Stat	P-value	1 ower 05%	Inner 05%	ower 95.0%p	ner 05 (
Intercept	40.64	12.49	3.25	0.00		65.67	15.61	65.6
Subsoil OM%						3.91		
Topsoil K	-4.19 0.47	4.04 0.08	-1.04 5.97	0.30 0.00			-12.29	3.92
	11/1/7	0.08	5 47	0.00	0.31	0.63	0.31	0.63

		pson up to	o 240 mg K/	i, no anuv	iuiii)			
Regression Sto								
Multiple R	0.58							
R Square	0.33							
Adjusted R Squa	0.32							
Standard Error	27.42							
Observations	51							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	18389.87	18389.87	24.46247	9.31E-06			
Residual	49	36836.16	751.7583					
Total	50	55226.02						
C		andard Err	t Stat	P-value	Lower 95%		ower 95.0%	
Intercept	46.84	9.14	5.12	0.00	28.47	65.22	28.47	65.22
Topsoil K	0.37	0.08	4.95	0.00	0.22	0.52	0.22	0.52
Subsoil K = Topso	il K x 0.37	' + 47						
Grass ; clay subso	oils - allow	ance for s	ampling m	ethod				
Regression Sto								
Multiple R	0.58							
R Square	0.33							
Adjusted R Squa	0.31							
Standard Error	27.67							
Observations	51							
ANOVA						_		
	df	SS	MS		gnificance	F		
Regression	2	18464.67	9232.336	12.05484	5.73E-05			
Residual	40	26764 25						
	48	36761.35	765.8614					
Total	48 50		765.8614					
Total	50	55226.02		P-value	Lower 95%	Upper 95%	ower 95.0%	oper 95.0
Total C	50 oefficients	55226.02 andard Err	t Stat				ower 95.0% 28.36	
Total C	50 oefficients 47.68	55226.02 andard Err 9.61	t Stat 4.96	0.00	28.36	67.00	28.36	67.00
Total C Intercept Method	50 oefficients 47.68 -2.51	55226.02 andard Err 9.61 8.02	<i>t Stat</i> 4.96 -0.31	0.00 0.76	28.36 -18.63	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K	50 oefficients 47.68 -2.51 0.37	55226.02 andard Err 9.61 8.02 0.08	t Stat 4.96 -0.31 4.91	0.00 0.76 0.00	28.36 -18.63 0.22	67.00	28.36	<i>oper 95.0</i> 67.00 13.62 0.53
Total C Intercept Method	50 oefficients 47.68 -2.51 0.37	55226.02 andard Err 9.61 8.02 0.08	t Stat 4.96 -0.31 4.91	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K	50 oefficients 47.68 -2.51 0.37 d irrelevar	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling metho	50 oefficients 47.68 -2.51 0.37 d irrelevar bils - allow	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total Clintercept Method Topsoil K Sampling methor Grass ; clay subse	50 oefficients 47.68 -2.51 0.37 d irrelevar bils - allow	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling metho Grass ; clay subso Regression Sto	50 oefficients 47.68 -2.51 0.37 d irrelevar bils - allow ntistics	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling method Grass ; clay subso Regression Sto Multiple R	50 <i>oefficients</i> 47.68 -2.51 0.37 d irrelevar oils - allow <i>ntistics</i> 0.59	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling method Grass ; clay subso Regression Sto Multiple R R Square	50 oefficients 47.68 -2.51 0.37 d irrelevar oils - allow ntistics 0.59 0.35	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling methor Grass ; clay subso Regression Sto Multiple R R Square Adjusted R Squa	50 0efficients 47.68 -2.51 0.37 d irrelevar 0.15 0.59 0.35 0.32	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling metho Grass ; clay subso Regression Sto Multiple R R Square Adjusted R Squa Standard Error	50 0efficients 47.68 -2.51 0.37 d irrelevar bils - allow ntistics 0.59 0.35 0.32 27.38	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<i>t Stat</i> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00	28.36 -18.63 0.22	67.00 13.62	28.36 -18.63	67.00 13.62
Total C Intercept Method Topsoil K Sampling metho Grass ; clay subso Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations	50 00000000000000000000000000000000000	55226.02 andard Err 9.61 8.02 0.08 nt and poo	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t	0.00 0.76 0.00 to other ur	28.36 -18.63 0.22 nknowns	67.00 13.62 0.53	28.36 -18.63	67.00 13.62
Total Clintercept Method Topsoil K Sampling method Grass ; clay subse Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA	50 <i>oefficients</i> : 47.68 -2.51 0.37 d irrelevar <i>oils - allow</i> <i>ntistics</i> 0.59 0.35 0.32 27.38 51 <i>df</i>	55226.02 andard Err 9.61 8.02 0.08 nt and pool vance for su	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM	0.00 0.76 0.00 to other un	28.36 -18.63 0.22 nknowns	67.00 13.62 0.53	28.36 -18.63	67.00 13.62
Total Control Control	50 oefficients: 47.68 -2.51 0.37 d irrelevar oils - allow otistics 0.59 0.35 0.32 27.38 51 df 2	55226.02 andard Err 9.61 8.02 0.08 nt and poor rance for su sance for su 5S 19229.8	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM	0.00 0.76 0.00 to other ur	28.36 -18.63 0.22 nknowns	67.00 13.62 0.53	28.36 -18.63	67.00 13.62
Total Control Control	50 0 efficients 47.68 -2.51 0.37 d irrelevar 0.159 0.35 0.32 27.38 51 df 2 48	55226.02 andard Err 9.61 8.02 0.08 nt and poor vance for su vance for su ss 19229.8 35996.22	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM	0.00 0.76 0.00 to other un	28.36 -18.63 0.22 nknowns	67.00 13.62 0.53	28.36 -18.63	67.00 13.62
Total Clintercept Method Topsoil K Sampling method Grass ; clay subsc Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Regression Residual Total	50 oefficients: 47.68 -2.51 0.37 d irrelevar oils - allow otistics 0.59 0.35 0.32 27.38 51 df 2 48 50	55226.02 andard Err 9.61 8.02 0.08 nt and poor rance for su rance for su 552 19229.8 35996.22 55226.02	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM	0.00 0.76 0.00 to other un	28.36 -18.63 0.22 nknowns	67.00 13.62 0.53	28.36 -18.63	67.00 13.62
Total Clintercept Method Topsoil K Sampling method Grass ; clay subsc Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Regression Residual Total	50 oefficients: 47.68 -2.51 0.37 d irrelevar oils - allow otistics 0.59 0.35 0.32 27.38 51 df 2 48 50	55226.02 andard Err 9.61 8.02 0.08 nt and poor vance for su vance for su ss 19229.8 35996.22	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM	0.00 0.76 0.00 to other un <i>F</i> 12.82121	28.36 -18.63 0.22 nknowns gnificance 3.46E-05	67.00 13.62 0.53	28.36 -18.63	67.00 13.62 0.53
Total Clintercept Method Topsoil K Sampling method Grass ; clay subsc Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Regression Residual Total	50 oefficients: 47.68 -2.51 0.37 d irrelevar oils - allow otistics 0.59 0.35 0.32 27.38 51 df 2 48 50	55226.02 andard Err 9.61 8.02 0.08 nt and poor rance for su rance for su 552 19229.8 35996.22 55226.02	<u>t Stat</u> 4.96 -0.31 4.91 r r2 is due t ubsoil OM <u>MS</u> 9614.898 749.9213	0.00 0.76 0.00 to other un <i>F</i> 12.82121	28.36 -18.63 0.22 hknowns gnificance 3.46E-05	67.00 13.62 0.53	28.36 -18.63 0.22	67.00 13.62 0.53
Total C Intercept Method Topsoil K Sampling metho Grass ; clay subso Regression Sto Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	50 0efficients: 47.68 -2.51 0.37 d irrelevar oils - allow tistics 0.59 0.35 0.32 27.38 51 df 2 48 50 00 00 00 00 00 00 00 00 00	55226.02 andard Err 9.61 8.02 0.08 nt and poor vance for su vance for su soft 19229.8 35996.22 55226.02	t Stat 4.96 -0.31 4.91 r r2 is due t ubsoil OM MS 9614.898 749.9213 t Stat	0.00 0.76 0.00 to other un F 12.82121 P-value	28.36 -18.63 0.22 hknowns gnificance 3.46E-05 Lower 95% 31.18	67.00 13.62 0.53 F Upper 95%	28.36 -18.63 0.22	67.00 13.62 0.53

GRASS: CLAY SU	BSOILS (to	psoil up to	o 240 mg K/	'l, no alluv	ium)			
Regression St	atistics							
Multiple R	0.58							
R Square	0.33							
Adjusted R Squa	0.32							
Standard Error	27.42							
Observations	51							
ANOVA								
	df	SS	MS	F	qnificance	F		
Regression	1	18389.87	18389.87	24.46247	5 7			
Residual	49	36836.16	751.7583	21110217	5.512 00			
Total	50	55226.02	751.7505					
Total	50	55220.02						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	46.84	9.14	5.12	0.00	28.47	65.22	28.47	65.22
Topsoil K	0.37	0.08	4.95	0.00	0.22	0.52	0.22	0.52
Subsoil K = Topso	oil K x 0.37	7 + 47						
Grass ; clay subs	oils - allow	ance for s	ampling m	ethod				
Regression St	atistics							
Multiple R	0.58							
R Square	0.33							
Adjusted R Squa	0.31							
Standard Error	27.67							
Observations	51							
ANOVA								
ANOVA	df	SS	MS	F	gnificance	E		
Degradeien			-			Г		
Regression	2	18464.67	9232.336	12.05484	5.73E-05			
Residual	48	36761.35	765.8614					
Total	50	55226.02	í					
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	47.68	9.61	4.96	0.00		67.00	28.36	67.00
Method	-2.51	8.02	-0.31	0.76		13.62	-18.63	13.62
Topsoil K	0.37	0.08	4.91	0.00		0.53	0.22	0.53
Sampling metho						0.55	0.22	0.00
bamping metho	umerevu	it and poo	11215 446					
Grass ; clay subs	oils - allow	ance for s	ubsoil OM					
Regression St								
Multiple R	0.59							
R Square	0.35							
Adjusted R Squa	0.32							
Standard Error	27.38							
Observations	51							
ANOVA	-16	66	P.A.C	-	a in if :	<u>г</u>		
<u> </u>	df	SS	MS		gnificance	F		
Regression	2	19229.8	9614.898	12.82121	3.46E-05			
Residual	48	35996.22	749.9213					
Total	50	55226.02						
(`oefficient:	andard Err	t Stat	P-value	10wer 95%	Inner 95%	ower 95.0%p	ner 95 N
Intercept	51.87	10.29	5.04	0.00		72.56	31.18	72.56
Subsoil OM%			-1.06	0.00				
	-3.40	3.21 0.08	-1.06 5.06	0.30		3.06 0.54	-9.85 0.23	3.06 0.54
Topsoil K	0.39							115/

Regression Sta								
Multiple R	0.72							
R Square	0.52							
Adjusted R Squa	0.51							
Standard Error	14.08							
Observations	46							
ANOVA								
	df	SS	MS		gnificance F			
Regression	1		9360.018	47.23832	1.76E-08			
Residual	44	8718.363	198.1446					
Total	45	18078.38						
Co	oefficients	andard Err	t Stat	P-value	Lower 95%U	pper 95%ov	ver 95.0%p	per 95.0
Intercept	23.80	5.50	4.33	0.00		34.89	12.71	34.89
Topsoil K	0.46	0.07	6.87	0.00	0.33	0.60	0.33	0.60
Grass alluvial soi	ls - heavy	loam or cla	ay -effect o	of sampling	g method			
Regression Sta			•					
Multiple R	0.72							
R Square	0.52							
Adjusted R Squa	0.50							
Standard Error	14.23							
Observations	46							
ANOVA								
	df	SS	MS	F	gnificance F			
Regression	2		4686.833	, 23.15226	1.5E-07			
Residual	43	8704.715	202.4352	25.15220	1.52 07			
Total	45	18078.38	202.4332					
Total	-13	10070.00						
Co	oefficients	andard Err	t Stat	P-value	Lower 95%U	pper 95%ov	ver 95.0%p	per 95.0
Intercept	23.53	5.66	4.15	0.00	12.10	34.95	12.10	34.95
Method	1.14	4.39	0.26	0.80	-7.71	9.99	-7.71	9.99
Topsoil K	0.46	0.07	6.49	0.00	0.31	0.60	0.31	0.60
No significant inf	luence							
Grass alluvial soi	ls - heavy	loam or cla	ay - effect o	of subsoil	OM%			
Regression Sta	tistics							
Multiple R	0.76							
R Square	0.57							
Adjusted R Squa	0.55							
Standard Error	13.39							
Observations	46							
ANOVA								
	df	SS	MS	F	gnificance F			
Regression	2	10373.53	5186.766	28.94683	1.09E-08			
Residual	43	7704.848	179.1825					
Total	45	18078.38						
Co	oefficients	andard Err	t Stat	P-value	Lower 95%U	pper 95%ov	ver 95.0%p	ver 95.0
Intercept	13.61	6.73	2.02	0.05	0.04	27.17	0.04	27.17
Subsoil OM%	4.14	1.72	2.41	0.02	0.67	7.62	0.67	7.62
Topsoil K	0.43	0.06	6.72	0.00	0.30	0.56	0.30	0.56
repsent								

Grass ALLUVIAL Prediction of sul	_							
Regression St	atistics							
Multiple R	0.64							
R Square	0.41							
Adjusted R Squa	0.39							
Standard Error	37.89							
Observations	28							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	 1	26062.28	26062.28	18.15154		-		
Residual	26	37331.24	1435.817	10.1010	0.000200			
Total	20	63393.53	1435.017					
	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	2.24	18.85	0.12	0.91	-36.51	40.99	-36.51	40.99
Topsoil K	0.89	0.21	4.26	0.00	0.46	1.32	0.46	1.32
Subsoil K = Tops	oil K x 0.8	9 +2						
Grass ALLUVIAL	SOILS - ligh	nt or mediu	ım subsoil:	s - effect o	of subsoil O	M%		
Regression St	atistics							
Multiple R	0.65							
R Square	0.42							
Adjusted R Squa	0.37							
Standard Error	38.47							
Observations	28							
ANOVA								
////	df	SS	MS	F	qnificance	F		
Regression	2	26390.15	13195.08	8.914779	5 ,	Γ		
Residual	25	37003.37	1480.135	0.914/79	0.001195			
Total	25	63393.53	1480.135					
TOLAI	27	03393.33						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	-4.57	24.00	-0.19	0.85	-54.01	44.86	-54.01	44.86
Subsoil OM%	2.88	6.11	0.47	0.64	-9.71	15.46	-9.71	15.46
Topsoil K	0.88	0.21	4.17	0.00	0.45	1.32	0.45	1.32
Organic matter o	loes not in	nprove cor	relation					
Subsoil K = Tops				_				
	011 K X U.8	8+ Subsoi	1 UIVI X 2.9	- 5				
	011 K X U.8	8+ Subsoi	I UIVI X 2.9	- 5				
Grass ALLUVIAL					of subsoil st	tone class		
Grass ALLUVIAL Rearession St	SOILS - ligh				of subsoil st	tone class		
Regression St	SOILS - ligh atistics				of subsoil st	tone class		
<i>Regression St</i> Multiple R	SOILS - lig t atistics 0.68				f subsoil st	tone class		
<i>Regression St</i> Multiple R R Square	SOILS - ligh atistics 0.68 0.46				f subsoil st	tone class		
<i>Regression St</i> Multiple R R Square Adjusted R Squa	SOILS - ligh atistics 0.68 0.46 0.42				f subsoil st	tone class		
Regression St Multiple R R Square Adjusted R Squa Standard Error	SOILS - ligh atistics 0.68 0.46 0.42 36.86				f subsoil st	tone class		
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations	SOILS - ligh atistics 0.68 0.46 0.42				f subsoil st	tone class		
Regression St Multiple R R Square Adjusted R Squa Standard Error	SOILS - ligh atistics 0.68 0.46 0.42 36.86 28	it or mediu	ım subsoil:	s - effect o				
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA	SOILS - ligh atistics 0.68 0.46 0.42 36.86 28 df	nt or mediu	ım subsoil: MS	s - effect o F	gnificance			
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression	SOILS - ligh atistics 0.68 0.46 0.42 36.86 28 df 28	ss 29435.29	IM subsoil: MS 14717.64	s - effect o	gnificance			
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual	SOILS - ligh atistics 0.68 0.42 36.86 28 df 2 2 25	ss 29435.29 33958.24	ım subsoil: MS	s - effect o F	gnificance			
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression	SOILS - ligh atistics 0.68 0.46 0.42 36.86 28 df 28	ss 29435.29	IM subsoil: MS 14717.64	s - effect o F	gnificance			
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	SOILS - ligh atistics 0.68 0.42 36.86 28 df 2 2 25	ss 29435.29 33958.24 63393.53	IM subsoil: MS 14717.64	s - effect o F 10.83511	gnificance 0.000409	F	ower 95.09/p	per 95.0
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	SOILS - ligh atistics 0.68 0.42 36.86 28 df 22 25 27	ss 29435.29 33958.24 63393.53	MS 14717.64 1358.33	s - effect o F 10.83511	gnificance 0.000409 Lower 95%	F	ower 95.0%p -22.09	per 95.0 98.28
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total	SOILS - ligh atistics 0.68 0.42 36.86 28 df 22 25 27 Coefficients	ss 29435.29 33958.24 63393.53 andard Err	MS 14717.64 1358.33 t Stat	F 10.83511 <i>P-value</i>	<i>gnificance</i> 0.000409 Lower 95% -22.09	F Upper 95%		98.28
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total C Intercept Subsoil stone	SOILS - ligh atistics 0.68 0.42 36.86 28 df 2 25 27 coefficients 38.09	<u>SS</u> 29435.29 33958.24 63393.53 andard Err 29.22	<u>MS</u> 14717.64 1358.33 <u>t Stat</u> 1.30 -1.58	<i>F</i> 10.83511 <i>P-value</i> 0.20	gnificance 0.000409 Lower 95% -22.09 -56.75	F Upper 95% 98.28	-22.09 -56.75	98.28 7.55
Regression St Multiple R R Square Adjusted R Squa Standard Error Observations ANOVA Regression Residual Total C Intercept	SOILS - ligh atistics 0.68 0.42 36.86 28 df 22 25 27 <i>coefficients</i> 38.09 -24.60 0.84	ss 29435.29 33958.24 63393.53 andard Err 29.22 15.61 0.21	IM SUBSOIL	<i>F</i> 10.83511 <i>P-value</i> 0.20 0.13 0.00	gnificance 0.000409 Lower 95% -22.09 -56.75	<i>F</i> <i>Upper 95%</i> 98.28 7.55	-22.09	

11.8 Effect of sampling method and organic matter on topsoil pH

Arable data Affect of sampling	method or	n topsoil p	H (all data	up to pH 7	.0)			
Regression Sta			•		- 1			
Multiple R	0.01							
R Square	0.00							
Adjusted R Square								
Standard Error	0.41							
Observations	196							
ANOVA	150							
	df	SS	MS	F	gnificance	F		
Regression	-	0.004636	-		0.867511	, 		
Residual	194		0.166145	0.027505	0.007511			
Total	194	32.23673	0.100145					
	Coefficients		t Stat	Dugluo	lower 05%	Upper OE%	wor OF Ollor	or OF (
	6.39	0.05	141.09	0.00		6.48	wer 95.0%pp 6.30	6.4
Intercept Method	0.01	0.05	0.17	0.00	-0.11	0.48	-0.11	0.4
No influence	0.01	0.00	0.17	0.87	-0.11	0.15	-0.11	0.1
No influence								
Cross data (lava a	to poivo o	ad ama niti	.)					
Grass data (leys, ex			•		•			
Affect of sampling		n topsoli p	H (all data	ир то рн 7	.0			
Regression Sta								
Multiple R	0.07							
R Square	0.01							
Adjusted R Square								
Standard Error	0.46							
Observations	342							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.388773	0.388773	1.863944	0.173073			
Residual	340	70.91567	0.208576					
Total	341	71.30444						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%o	wer 95.0%pp	oer 95.0
Intercept	6.19	0.04	172.01	0.00	6.12	6.26	6.12	6.2
Method	-0.07	0.05	-1.37	0.17	-0.16	0.03	-0.16	0.0
Very weak influen	ce (0.7 less	by corer)						
All data pH up to 7	.0							
		n OM capp	ed at 10%					
	oil pH with	n OM capp	ed at 10%					
Correlation of tops Regression Sta	oil pH with	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R	soil pH with tistics	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R R Square	soil pH with tistics 0.20 0.04	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square	soil pH with tistics 0.20 0.04	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error	soil pH with tistics 0.20 0.04 0.04	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error	tistics 0.20 0.04 0.04 0.45	n OM capp	ed at 10%					
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error	tistics 0.20 0.04 0.04 0.45 538	n OM capp	ed at 10%	F	qnificance	F		
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations	501 pH with <i>tistics</i> 0.20 0.04 0.04 0.45 538 <i>df</i>	55	MS		gnificance 3.76E-06	F		
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations Regression	tistics 0.20 0.04 0.04 0.45 538 df 1	<u>55</u> 4.334833	<u>MS</u> 4.334833	F 21.83616		F		
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations Regression Regression	tistics 0.20 0.04 0.04 0.45 538 df 1 536	<u>SS</u> 4.334833 106.4047	MS			F.		
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations Regression Residual Total	tistics 0.20 0.04 0.45 538 df 1 536 537	<u>SS</u> 4.334833 106.4047 110.7396	<i>MS</i> 4.334833 0.198516	21.83616	3.76E-06		wer 95 0 ^g /nr	per 95 (
Correlation of tops Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations Regression Residual Total	tistics 0.20 0.04 0.45 538 df 1 536 537 Coefficients	<i>SS</i> 4.334833 106.4047 110.7396 andard Err	MS 4.334833 0.198516 t Stat	21.83616 <i>P-value</i>	3.76E-06	Upper 95%a	wer 95.0%pp 6 36	
Multiple R R Square Adjusted R Square Standard Error Observations Regression Regression Residual Total	tistics 0.20 0.04 0.45 538 df 1 536 537	<u>SS</u> 4.334833 106.4047 110.7396	<i>MS</i> 4.334833 0.198516	21.83616	3.76E-06 Lower 95% 6.36		wer 95.09 pp 6.36 -0.08	<i>per 95.0</i> 6.5 -0.02

Arable data only p	H up to 7.0							
Correlation of tops	soil pH with	n OM capp	ed at 10%					
Regression Sta	itistics							
Multiple R	0.13							
R Square	0.02							
Adjusted R Square	0.01							
Standard Error	0.40							
Observations	196							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.561763	0.561763	3.440635	0.065129			
				01110000				
Residual	194	31.67497	0.163273	01110000				
Residual Total	194 195	31.67497 32.23673	0.163273					
Total		32.23673	0.163273 t Stat		Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Total	195	32.23673						1 <i>pper 95.0</i> 9 6.72
Total (195 Coefficients	32.23673 andard Err	t Stat	P-value	6.38		6.38	6.72
Total (Intercept	195 <i>Coefficients</i> 6.55 -0.05	32.23673 andard Err 0.09 0.02	<i>t Stat</i> 75.73 -1.85	<i>P-value</i> 0.00 0.07	6.38 -0.09	6.72 0.00	6.38	6.72

11.9 Effect of topsoil pH and texture on subsoil pH

ALL DATA – sandy, light loamy and medium topsoil (pH up to 7.0)

Effect of topsoil ph	lonly							
Regression Sta	tistics							
Multiple R	0.75							
R Square	0.56							
Adjusted R Square	0.56							
Standard Error	0.33							
Observations	539							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	75.70009	75.70009	693.3748	9.6E-99			
Residual	537	58.62767	0.109176					
Total	538	134.3278						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	oper 95.0
Intercept	1.34	0.20	6.80	0.00		1.72		1.72
Тор рН	0.83	0.03	26.33	0.00		0.89	0.77	0.89
Effect of topsoil pl	l and samp	ling metho	bd					
Regression Sta								
Multiple R	0.75							
R Square	0.57							
Adjusted R Square	0.57							
Standard Error	0.33							
Observations	539							
ANOVA								
	df	SS	MS	F	qnificance	E		
Regression	2	76.21643	38.10822	, 351.4978	5 ,	1		
Residual		58.11132		551.4576	2.971-90			
Total		134.3278	0.100417					
			4 C+++	Duralua	1	110000000000		
	Coefficients		t Stat				ې(%ower 95.0	
Intercept	1.38	0.20	7.02	0.00		1.77		1.77
Method	-0.06	0.03	-2.18	0.03		-0.01		-0.01
Topsoil pH	0.82	0.03	26.35	0.00		0.89	0.76	0.89
Small but genuine	effect of sa	ampling m	ethod (-0.0	06 units by	corer)			
F (f t - f + 1) + -								
Effect of topsoil te		opsoli pH						
Regression Sta								
Multiple R	0.76							
R Square	0.58							
Adjusted R Square								
Standard Error	0.33							
Observations	538							
ANOVA	15							
. .	df	SS	MS		gnificance	F		
Regression	2	77.20439	38.6022	362.5434	3E-100			
Residual	535	56.9647	0.106476					
Total	537	134.1691						
	Coefficients		t Stat				ower 95.0%µ	
Intercept	1.23	0.20	6.24	0.00		1.61		1.61
	0.40	0.03	3.86	0.00	0.05	0.15	0.05	0.15
Topsoil Texture Topsoil pH	0.10 0.82	0.03	26.45	0.00		0.88		0.88

Regression Sta	tistics							
Multiple R	0.76							
R Square	0.58							
Adjusted R Square	0.57							
Standard Error	0.33							
Observations	538							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	77.23175	38.61588	362.8461	2.6E-100			
Residual	535	56.93734	0.106425					
Total	537	134.1691						
С	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%o	wer 95.0% p	per 95.0
Intercept	1.22	0.20	6.23	0.00	0.84	1.61	0.84	1.61
Subsoil Texture	0.05	0.01	3.89	0.00	0.02	0.07	0.02	0.07
		0.00	26.80	0.00	0.77	0.89	0.77	0.89
Topsoil pH	0.83	0.03	20.80	0.00	0.77	0.65	0.77	0.05
Topsoil pH subsoil texture is s					-			0.05
					-			0.03
	ignificant l	out makes	a smaller i	ncrease th	-			0.05
subsoil texture is s	ignificant l V (capped	out makes	a smaller i	ncrease th	-			0.05
subsoil texture is s Effect of subsoil OI	ignificant l V (capped	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Sta	ignificant l V (capped tistics	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Sta Multiple R	ignificant I M (capped tistics 0.76	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Sta Multiple R R Square	ignificant I M (capped tistics 0.76 0.58	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Star Multiple R R Square Adjusted R Square	ignificant t M (capped tistics 0.76 0.58 0.58	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Stat Multiple R R Square Adjusted R Square Standard Error	ignificant t VI (capped tistics 0.76 0.58 0.58 0.32	out makes	a smaller i	ncrease th	-			
subsoil texture is s Effect of subsoil OI Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations	ignificant t VI (capped tistics 0.76 0.58 0.58 0.32	out makes	a smaller i	ncrease th	an <i>topsoil</i>	texture clas		
subsoil texture is s Effect of subsoil OI Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	ignificant t V (capped <i>tistics</i> 0.76 0.58 0.32 538	out makes at 6%) and	a smaller i I topsoil pH	ncrease th	an topsoil gnificance	texture clas		
subsoil texture is s Effect of subsoil OI Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations	ignificant t V (capped <i>tistics</i> 0.76 0.58 0.32 538 <i>df</i>	out makes at 6%) and SS	a smaller i I topsoil pH	ncrease th I	an topsoil gnificance	texture clas		
subsoil texture is s Effect of subsoil OI Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	ignificant t V (capped <i>tistics</i> 0.76 0.58 0.32 538 <i>df</i> 2	ss 77.73963	a smaller i I topsoil pH MS 38.86982	ncrease th I	an topsoil gnificance	texture clas		
subsoil texture is s Effect of subsoil OI Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	ignificant b V (capped <i>tistics</i> 0.76 0.58 0.32 538 <i>df</i> 2 535 537	<i>ss</i> 56.42945 134.1691	a smaller i I topsoil pH MS 38.86982	<i>F</i> 368.5195	an topsoil gnificance 2.4E-101	F		
subsoil texture is s Effect of subsoil OI Regression Star Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	ignificant b V (capped <i>tistics</i> 0.76 0.58 0.32 538 <i>df</i> 2 535 537	ss 56.42945	a smaller i I topsoil pH MS 38.86982 0.105476	<i>F</i> 368.5195	an topsoil gnificance 2.4E-101 Lower 95%	F	55	oer 95.0
subsoil texture is s Effect of subsoil OI Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C	ignificant t V (capped <i>tistics</i> 0.76 0.58 0.32 538 <i>df</i> 2 535 537 <i>coefficients</i>	SS 77.73963 56.42945 134.1691 andard Err	a smaller i I topsoil pH MS 38.86982 0.105476 <i>t Stat</i>	F 368.5195 P-value	an topsoil gnificance 2.4E-101 Lower 95% 1.16	texture clas	55 55 9 9 9 9 9 5.09 9	<i>per 95.0</i> 1.95
subsoil texture is s Effect of subsoil OI Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	ignificant t V (capped <i>tistics</i> 0.76 0.58 0.58 0.32 538 <i>df</i> 2 535 537 <i>coefficients</i> 1.56	SS 77.73963 56.42945 134.1691 andard Err 0.20	a smaller i I topsoil pH MS 38.86982 0.105476 t Stat 7.81	rcrease th I <i>F</i> 368.5195 <i>P-value</i> 0.00	an <i>topsoil</i> gnificance 2.4E-101 Lower 95% 1.16 -0.08	texture clas F Upper 95%o 1.95	55 55 55 55 55 50 7 50 7 9 7 1.16	

ALL DATA – heavy loam and clay topsoil (pH up to 7.0)

Effect of topsoil pl	HONLY							
Regression Sta	tistics							
Multiple R	0.67							
R Square	0.44							
Adjusted R Square	0.44							
Standard Error	0.37							
Observations	100							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	10.87628	10.87628	78.5249	3.57E-14			
Residual	98	13.57372	0.138507					
Total	99	24.45						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	1.35	0.61	2.22	0.03	0.14	2.55	0.14	2.55
Topsoil pH	0.84	0.10	8.86	0.00	0.65	1.03	0.65	1.03

Regression Sta	tistics							
Multiple R	0.67							
R Square	0.45							
Adjusted R Square	0.43							
Standard Error	0.37							
Observations	100							
ANOVA	100							
	df	SS	MS	F	gnificance	F		
Regression	2	10.88754	5.443772	, 38.93438	5 7	,		
Residual	97		0.139819	50.55450	5.00L 15			
Total	99	24.45	0.139019					
	55 Coefficients		t Stat	Dualua	Lower OF%	Upper OE%	ower OF Of	nnor OF O
	1.33	0.61	2.16		<i>Lower 95%</i> 0.11	2.54		2.54 2
Intercept	0.02	0.81	0.28	0.03		0.18		0.18
Sampling method								
Topsoil pH	0.84	0.10	8.82	0.00	0.65	1.03	0.65	1.03
No effect of sampl	ing metho	a						
Effect of topsoil te	xture and t	opsoil pH						
Regression Sta	tistics							
Multiple R	0.67							
R Square	0.45							
Adjusted R Square	0.44							
Standard Error	0.37							
Observations	100							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	10.93873	5.469365	39.26562		•		
Residual	97	13.51127	0.139291	55.20502	J. 222 15			
Total	99	24.45	0.100201					
	Coefficients		t Stat	P-value	Lower 95%	Inner 95%	ower 95 09	nner 95 O
Intercept	1.14	0.68	1.67	0.10		2.49		2.49
Topsoil Texture	0.08	0.13	0.67	0.50		0.33		0.33
Topsoil pH	0.84	0.10	8.68	0.00		1.03		1.03
Barely significant b								1.05
Subsoil pH = Topso						iay topsoi	15	
	511 p11 x 0.0	+ + 100301	i texture c		5 + 1.14			
Effect of Subsoil te	xture and	topsoil pH						
Pograccion Sta	tictics							
Regression Sta	listics							
Multiple R	0.68							
Multiple R	0.68							
Multiple R R Square	0.68 0.46							
Multiple R R Square Adjusted R Square	0.68 0.46 0.45							
Multiple R R Square Adjusted R Square Standard Error	0.68 0.46 0.45 0.37							
Multiple R R Square Adjusted R Square Standard Error Observations	0.68 0.46 0.45 0.37	SS	MS	F	gnificance	F		
Multiple R R Square Adjusted R Square Standard Error Observations	0.68 0.46 0.45 0.37 100		<u>MS</u> 5.588208	F 40.83722	gnificance 1.36E-13	F		
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	0.68 0.46 0.45 0.37 100 <i>df</i>					F		
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.68 0.46 0.45 0.37 100 <i>df</i> 2	11.17642	5.588208			F		
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.68 0.46 0.45 0.37 100 <i>df</i> 2 97 99	11.17642 13.27358 24.45	5.588208 0.136841	40.83722	1.36E-13		ower 95.09	'pper 95.0
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.68 0.46 0.45 0.37 100 <i>df</i> 2 97 99 Soefficients	11.17642 13.27358 24.45 andard Err	5.588208 0.136841 <i>t Stat</i>	40.83722 <i>P-value</i>	1.36E-13 Lower 95%	Upper 95%		
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total C Intercept	0.68 0.46 0.45 0.37 100 df 2 97 99 Coefficients 0.96	11.17642 13.27358 24.45 andard Err 0.66	5.588208 0.136841 <i>t Stat</i> 1.47	40.83722 <i>P-value</i> 0.15	1.36E-13 Lower 95% -0.34	Upper 95% 2.26	-0.34	2.26
Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.68 0.46 0.45 0.37 100 <i>df</i> 2 97 99 Soefficients	11.17642 13.27358 24.45 andard Err	5.588208 0.136841 <i>t Stat</i>	40.83722 <i>P-value</i>	1.36E-13 Lower 95% -0.34 -0.02	Upper 95%	-0.34 -0.02	<i>pper 95.0</i> 2.26 0.16 1.06

Effect of subsoil O	M (capped	at 6%) and	l topsoil pl	1				
Regression Sta	tistics							
Multiple R	0.67							
R Square	0.44							
Adjusted R Square	0.43							
Standard Error	0.37							
Observations	100							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	10.87686	5.438431	38.86558	4.01E-13			
Residual	97	13.57314	0.139929					
Total	99	24.45						
C	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	1.34	0.62	2.16	0.03	0.11	2.57	0.11	2.57
Subsoil OM%	0.00	0.03	0.06	0.95	-0.06	0.07	-0.06	0.07
Topsoil pH	0.84	0.10	8.80	0.00	0.65	1.03	0.65	1.03
No effect of subsoi	il organic n	natter						

All data – sandy, light loamy and medium topsoil (pH 7.1+)

Effect of topsoil pl	and tops	oil texture						
Regression Sta	tistics							
Multiple R	0.45							
R Square	0.20							
Adjusted R Square	0.19							
Standard Error	0.38							
Observations	84							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	2.98225	1.491125	10.42328	9.37E-05			
Residual	81	11.58763	0.143057					
Total	83	14.56988						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	1.60	1.32	1.21	0.23	-1.03	4.23	-1.03	4.23
Topsoil Texture	0.15	0.07	2.14	0.04	0.01	0.30	0.01	0.30
Topsoil pH	0.74	0.18	4.16	0.00	0.39	1.10	0.39	1.10
Subsoil pH = Topso	il pH x 0.75	5 + Topsoil	texture cl	ass x 0.15	+ 1.6			
Poor r2 but gives a	seamless	fit with the	up to 7.0	data				

All data – heavy loam and clay topsoil (pH 7.1 +)

Effect of topsoil pl	l and topso	oil texture						
Regression Sta	tistics							
Multiple R	0.62							
R Square	0.38							
Adjusted R Square	0.30							
Standard Error	0.40							
Observations	19							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	1.550811	0.775406	4.905323	0.021806			
Residual	16	2.529189	0.158074					
Total	18	4.08						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	0.81	2.20	0.37	0.72	-3.85	5.47	-3.85	5.47
Topsoil Texture	0.15	0.27	0.57	0.58	-0.41	0.72	-0.41	0.72
Topsoil pH	0.84	0.31	2.70	0.02	0.18	1.50	0.18	1.50
Subsoil pH = Topso	il pH x 0.84	1 + Topsoi	l texture cl	ass x 0.15	+ 0.81			
For texture class 3	= Topsoil p	H x 0.84 + 3	1.30					
Topsoil texture no	t demonsti	rably signif	icant					

Woodland all textures for topsoil up to pH 7.0

Woodland SANDY-	MEDIUM 1	extures						
Affect of topsoil pl								
Regression Sta	tistics							
Multiple R	0.88							
R Square	0.77							
Adjusted R Square	0.76							
Standard Error	0.40							
Observations	37							
ANOVA								
	df	SS	MS	F	anificance	F		
Regression	2	18.9004	9.450198		5 7			
Residual	34	5.49636	0.161658	50.45005	J.JZL 12			
Total		24.39676	0.101050					
	Coefficients		t Stat	P_value	1 ower 05%	Inner 95%	ower 95.0%p	ner 05 ()
	0.85	0.51	1.67	0.10		1.88	-0.19	<u>1.88</u>
Intercept								
Topsoil Textue	0.13	0.10	1.29	0.21		0.35	-0.08	0.35
Topsoil pH	0.85	0.10	8.50	0.00	0.65	1.06	0.65	1.06
	Lonh							
Affect of topsoil pl								
Regression Sta								
Multiple R	0.87							
R Square	0.76							
Adjusted R Square	0.76							
Standard Error	0.41							
Observations	37							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	18.63343	18.63343	113.1587	1.64E-12			
Residual	35	5.763322	0.164666					
Total	36	24.39676						
C	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%p	per 95.0
Intercept	0.63	0.48	1.30	0.20	-0.35	1.61	-0.35	1.61
Topsoil pH	0.92	0.09	10.64	0.00	0.75	1.10	0.75	1.10
Woodland all text	ures for to	osoil nH un	to 7.0					
Affect of topsoil pl		• •		oil nH				
Regression Sta		, <u>6</u> c	00 011 0000	011 p11				
Multiple R	0.85							
R Square	0.83 0.73							
Adjusted R Square	0.73							
Standard Error	0.72							
Observations	46							
	40							
ANOVA	-15		1.45	<i></i>	· · · · · · · · · · · · · · · · · · ·	-		
Do grocoi c -	df	SS	MS		gnificance	r		
Regression	2	23.46401	11.732	57.67079	6.73E-13			
Residual		8.747516	0.203431					
Total	45	32.21152						
	oefficients	andard Err	t Stat	Duchuc	LOWOR DEO/	Innar OE%	War OF O	nor OE O
							ower 95.0%p	
Intercept	0.72	0.50	1.44	0.16		1.72	-0.28	1.72
Sampling method	0.06	0.14	0.45	0.66		0.35	-0.22	0.35
Topsoil pH	0.90	0.08	10.66	0.00	0.73	1.07	0.73	1.07

Affect of topsoil pl	Honly							
Regression Sta	tistics							
Multiple R	0.85							
R Square	0.73							
Adjusted R Square	0.72							
Standard Error	0.45							
Observations	46							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression								
regression	1	23.42358	23.42358	117.2787	5.4E-14			
Residual	1 44	23.42358 8.787937	23.42358 0.199726	117.2787	5.4E-14			
0	-			117.2787	5.4E-14			
Residual Total	44 45	8.787937	0.199726			Upper 95%	ower 95.0%	pper 95.0%
Residual Total	44 45	8.787937 32.21152	0.199726		Lower 95%			<i>pper 95.0%</i> 1.72
Residual Total	44 45 Coefficients	8.787937 32.21152 andard Err	0.199726 t Stat	P-value	<i>Lower 95%</i> -0.14	1.72	-0.14	

11.10 Effect of Sampling method, Stones and Texture on OM

ALL ARABLE DATA Affect of sampling r	nethod on	tonsoil OM	٨%					
		topson Or	V1/0					
Regression Stat								
Multiple R	0.01							
R Square	0.00							
Adjusted R Square	0.00							
Standard Error	1.17							
Observations	290							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.010261	0.010261	0.007455	0.931255			
Residual	288	396.403	1.376399					
Total	289	396.4132						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%pp	oer 95.0
Intercept	3.31	0.10	32.03	0.00	3.11	3.51	3.11	3.5
Method	0.01	0.14	0.09	0.93	-0.26	0.28	-0.26	0.2
No significant effec	t							
GRASS LEYS								
Affect of sampling r	nethod on	tonsoil ON	/ %					
Regression Stat		topson on	170					
Multiple R	0.18							
R Square	0.03							
Adjusted R Square	0.03							
Standard Error	2.02							
Observations	287							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	40.97902	40.97902	10.05861	0.001682			
Residual	285	1161.097	4.074023					
Total	286	1202.076						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%d	ower 95.0%pp	oer 95.0
Intercept	3.87	0.17	23.01	0.00	3.54	4.20	3.54	4.20
Method	0.76	0.24	3.17	0.00	0.29	1.22	0.29	1.2
A big difference of	0.75%. 4 co	orer sample	es were or	ganic as op	posed to 2	by auger b	ut this does	not acc
		·						
EXTENSIVE & AMEN	IITY GRASS							
Affect of sampling	method on	topsoil ON	/ %					
Regression Stat								
Multiple R	0.08							
R Square	0.01							
Adjusted R Square	0.01							
Standard Error	2.35							
Observations	149							
ANOVA						_		
_	df	SS	MS		gnificance	F		
Regression		4.985484	4.985484	0.901201	0.344018			
Residual	147		5.532042					
Total	148	818.1957						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%pp	oer 95.0
		0.24	15 40	0.00	4.25	F 40	4 25	5.49
Intercept	4.87	0.31	15.49	0.00	4.25	5.49	4.25	

ARABLE DATA								
Effect of sampling	method an	d topsoil C	M% on sul	bsoil OM				
Regression Sta	tistics			2 points e	xcluded fo	r high or v.	low topsoil (ОМ
Multiple R	0.64					0 -		
R Square	0.41							
Adjusted R Square	0.41							
Standard Error	0.65							
Observations	286							
ANOVA								
	df	SS	MS	F	qnificance	F		
Regression	2	84.9926	42.4963	99.97409	1.43E-33			
Residual	283	120.2957	0.425073					
Total	285	205.2883						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	0.04	0.13	0.31	0.76				0.30
Method	0.43	0.08	5.49	0.00	0.27	0.58	0.27	0.58
Topsoil OM%	0.46	0.04	13.07	0.00	0.39	0.53	0.39	0.53
Sampling method is	s relevant v	vith an inc	rease of 0.4	4% in the s	ubsoil OM	by corer m	nethod	
						-		
ARABLE DATA								
Affect of topsoil ON	M% on subs	oil OM%	auger data	only				
Regression Sta	tistics							
Multiple R	0.46							
R Square	0.21							
Adjusted R Square	0.21							
Standard Error	0.75							
Observations	127							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	18.99256	18.99256	33.65676	5.08E-08			
Residual	125	70.53768	0.564301					
Total	126	89.53024						
	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	0.30	0.23	1.32	0.19	-0.15	0.75	-0.15	0.75
Topsoil OM%	0.38	0.07	5.80	0.00	0.25	0.51	0.25	0.51
Subsoil OM% = tops	soil OM% x	0.38 +	0.30					
Low r2. Corer data	below give	s better r2	, same inte	ercept but	bigger slop	be.		
ARABLE DATA								
Affect of topsoil ON		oil OM% o	corer data	only				
		oil OM% o	corer data d	only				
Affect of topsoil ON		oil OM% o	corer data o	only				
Affect of topsoil ON Regression Sta Multiple R R Square	tistics 0.72872 0.53	oil OM%(corer data (only				
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square	tistics 0.72872 0.53 0.53	oil OM%(corer data (only				
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error	tistics 0.72872 0.53 0.53 0.56	oil OM%(corer data	only				
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square	tistics 0.72872 0.53 0.53	oil OM% o	corer data (only				
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error	tistics 0.72872 0.53 0.53 0.56		corer data (only				
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations	tistics 0.72872 0.53 0.53 0.56	soil OM% o	corer data		gnificance	F		
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations	tistics 0.72872 0.53 0.53 0.56 159 df					F		
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	tistics 0.72872 0.53 0.53 0.56 159 df	55	MS	F		F		
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	tistics 0.72872 0.53 0.53 0.56 159 df 1	<u>SS</u> 54.87674 48.46288	<u>MS</u> 54.87674	F		F		
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	tistics 0.72872 0.53 0.53 0.56 159 df 1 157	<i>SS</i> 54.87674 48.46288 103.3396	<u>MS</u> 54.87674	F 177.7783	1.33E-27		ower 95.0%p	per 95.0
Affect of topsoil ON Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	tistics 0.72872 0.53 0.53 0.56 159 df 1 157 158	<i>SS</i> 54.87674 48.46288 103.3396	<i>MS</i> 54.87674 0.308681	F 177.7783	1.33E-27 Lower 95%			<i>per <u>95.0</u></i> 0.57

Effect of subsoil tex	ture and to	opsoil OM	% on subso	il OM (sa	nd subsoils	excluded)		
Regression Stat	istics							
Multiple R	0.64							
R Square	0.41							
Adjusted R Square	0.41							
Standard Error	0.66							
Observations	241							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	71.4472	35.7236	82.76016	5.18E-28			
Residual	238	102.7332	0.431652					
Total	240	174.1804						
(oefficients	andard Err	t Stat	P-value	.ower 95%	Upper 95%o	wer 95.0%p	per 95.0
Intercept	0.46	0.15	3.10	0.00	0.17	0.76	0.17	0.76
Subsoil Texture Cla	-0.14	0.04	-3.26	0.00	-0.23	-0.06	-0.23	-0.06
Subsoil OM%	0.51	0.04	12.85	0.00	0.43	0.59	0.43	0.59
Subsoil OM = Topso	IOM x 0.	51 - Sub		re class x (.14 + 0.			
For each texture cat								
	cgory subs			,, 0.13/0				
ARABLE DATA								
Effect of subsoil tex	turo cubo	ail stones a	and tonsoil	OM% on	subsoil OM	l (cand cube	soils ovclud	od)
Regression Stat		511 3101183 0					Sins Exclud	cuj
Multiple R	0.66							
	0.88							
R Square								
Adjusted R Square	0.43							
Standard Error	0.65							
Observations	241							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	3	75.33182	25.11061	60.20535	5.71E-29			
Residual	237	98.84859	0.417083					
Total	240	174.1804						
	oefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%o	wer 95.0%p	per 95.0
Intercept	0.21	0.17	1.27	0.21	-0.12	0.54	-0.12	0.54
Subsoil texture clas	-0.10	0.04	-2.29	0.02	-0.19	-0.01	-0.19	-0.01
Subsoil stone class	0.18	0.06	3.05	0.00	0.06	0.30	0.06	0.30
Topsoil OM%	0.51	0.04	13.04	0.00	0.43	0.58	0.43	0.58
Inclusion of stones	has a posit	ve effect o	on subsoil (OM% (one	class incre	ases subsoi	I OM by abo	out 0.2%
And improves r2 abo								
				•				
ARABLE DATA								
Effect of subsoil sto	nes and to	psoil OM%	on subsoi	I OM. San	d subsoils	only		
Regression Stat								
Multiple R	0.52							
	5.52							
	0.28							
R Square	0.28							
R Square Adjusted R Square	0.24							
R Square Adjusted R Square Standard Error	0.24 0.72							
R Square Adjusted R Square Standard Error Observations	0.24							
R Square Adjusted R Square Standard Error	0.24 0.72 45		MC		anifica			
R Square Adjusted R Square Standard Error Observations ANOVA	0.24 0.72 45 df	<u>SS</u>	MS		gnificance	F		
R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.24 0.72 45 <i>df</i> 2	8.375929	4.187964	F 7.989368	<i>gnificance</i> 0.001147	F		
R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual	0.24 0.72 45 df 2 42	8.375929 22.01607				F		
R Square Adjusted R Square Standard Error Observations ANOVA Regression	0.24 0.72 45 <i>df</i> 2	8.375929	4.187964			F		
R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.24 0.72 45 df 2 42 42 44	8.375929 22.01607 30.392	4.187964	7.989368	0.001147			
R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.24 0.72 45 df 2 42	8.375929 22.01607 30.392	4.187964	7.989368	0.001147	F Upper 95%o	wer 95.09p	per 95.0
R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.24 0.72 45 df 2 42 42 44	8.375929 22.01607 30.392	4.187964 0.524192	7.989368	0.001147 Lower 95%		wer 95.0%p -0.62	<i>per 95.0</i> 0.97
R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	0.24 0.72 45 df 2 42 42 44	8.375929 22.01607 30.392	4.187964 0.524192 t Stat	7.989368 P-value	0.001147 Lower 95% -0.62	Upper 95%o		

ALL GRASSLAND (e) Affect of topsoil ON		-		-				
Regression Sta								
Multiple R	0.62							
R Square	0.38							
Adjusted R Square	0.38							
Standard Error	1.05							
Observations	443							
ANOVA	115							
	df	SS	MS	F	qnificance	F		
Regression	1				6.03E-48			
Residual	441			2,1.55,2	0.002 10			
Total	442	782.5577	1.007.001					
	Coefficients		t Stat	P-value	lower 95%	Upper 95%d	wer 95 0%	nner 95 ()
Intercept	0.10	0.13	0.74	0.46			-0.16	0.36
Topsoil OM%	0.47	0.03	16.49	0.00		0.50	0.10	0.52
Subsoil OM% = Top			0.1	0.00	0.41	0.52	0.41	0.52
		. 0.47 +	0.1					
ALL GRASSLAND (e)	cluding sa	mples of >	10% tonsoi	IOM)				
Affect of sampling								
Regression Sta		u topson o	141 011 30.03					
Multiple R	0.63							
R Square	0.03							
Adjusted R Square	0.39							
Standard Error	1.04							
Observations	443							
	445							
ANOVA	10	66	146			_		
Degracien	df	SS	MS		gnificance	F		
Regression Residual		305.7991 476.7587	152.8995	141.1108	4.49E-48			
	440		1.083542					
Total	112	707 5577						
Total	442	782.5577	t Ctat	Dualua	Lower OF0/	Linner OF0/		
(Coefficients	andard Err				Upper 95%c		
Intercept	Coefficients 0.01	andard Err 0.13	0.10	0.92	-0.25	0.28	-0.25	0.28
Intercept Sampling method	Coefficients 0.01 0.26	andard Err 0.13 0.10	0.10 2.59	0.92 0.01	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM%	Coefficients 0.01 0.26 0.45	andard Err 0.13 0.10 0.03	0.10 2.59 15.85	0.92 0.01 0.00	-0.25 0.06	0.28	-0.25	0.28
Intercept Sampling method	Coefficients 0.01 0.26 0.45	andard Err 0.13 0.10 0.03	0.10 2.59 15.85	0.92 0.01 0.00	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil	Coefficients 0.01 0.26 0.45 OM is 0.26	0.13 0.13 0.10 0.03 % greater b	0.10 2.59 15.85 by corer teo	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e)	Coefficients 0.01 0.26 0.45 OM is 0.26 xcluding sa	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs	Coefficients 0.01 0.26 0.45 OM is 0.26 coluding sa soil OM - a	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta	Coefficients 0.01 0.26 0.45 OM is 0.26 coluding sa soil OM - a tistics	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R	Coefficients 0.01 0.26 0.45 OM is 0.26 coll om saus soil OM - a tistics 0.50	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28 0.46
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square	Coefficients 0.01 0.26 0.45 OM is 0.26 colloing sa soil OM - a tistics 0.50 0.25	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square	Coefficients 0.01 0.26 0.45 OM is 0.26 xcluding sa soil OM - a tistics 0.50 0.25 0.25	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (ex Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 0.25 1.19	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations	Coefficients 0.01 0.26 0.45 OM is 0.26 xcluding sa soil OM - a tistics 0.50 0.25 0.25	0.13 0.10 0.03 % greater b mples of >	0.10 2.59 15.85 by corer teo 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06	0.28	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (ex Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sat soil OM - a tistics 0.50 0.25 1.19 203	andard Err 0.13 0.10 0.03 % greater b mples of >: uger data c	0.10 2.59 15.85 Dy corer tec 10% topsoi	0.92 0.01 0.00 chnique	-0.25 0.06 0.40	0.28 0.46 0.51	-0.25 0.06	oper 95.09 0.28 0.46 0.51
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 0.25 1.19 203 df	SS	0.10 2.59 15.85 by corer tec 10% topsoi only <i>MS</i>	0.92 0.01 0.00 Chnique I OM)	-0.25 0.06 0.40	0.28 0.46 0.51	-0.25 0.06	0.28
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 0.25 1.19 203 df 1	2000 SS 2000 SS 200	0.10 2.59 15.85 oy corer teo 10% topsoi only <i>MS</i> 97.22754	0.92 0.01 0.00 chnique	-0.25 0.06 0.40	0.28 0.46 0.51	-0.25 0.06	0.28 0.46
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa coil OM - a tistics 0.50 0.25 1.19 203 df 1 201	2000 SS 2000 SS 200	0.10 2.59 15.85 by corer tec 10% topsoi only <i>MS</i>	0.92 0.01 0.00 Chnique I OM)	-0.25 0.06 0.40	0.28 0.46 0.51	-0.25 0.06	0.28 0.46
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 1.19 203 df 1 201 202	2000 States Stat	0.10 2.59 15.85 by corer tec 10% topsoi only MS 97.22754 1.419708	0.92 0.01 0.00 chnique I OM) <i>F</i> 68.4842	-0.25 0.06 0.40 gnificance 1.75E-14	0.28 0.46 0.51	-0.25 0.06 0.40	0.28 0.46 0.51
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (ex Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 1.19 203 df 1 201 202 Coefficients	2000 SS 0.13 0.10 0.03 % greater b mples of > uger data of 97.22754 285.3612 382.5888 andard Err	0.10 2.59 15.85 by corer tec 10% topsoi only <i>MS</i> 97.22754 1.419708 <i>t Stat</i>	0.92 0.01 0.00 chnique I OM) F 68.4842 P-value	-0.25 0.06 0.40 gnificance 1.75E-14 Lower 95%	0.28 0.46 0.51	-0.25 0.06 0.40	0.28 0.46 0.51
Intercept Sampling method Topsoil OM% On average subsoil ALL GRASSLAND (e) Topsoil OM on subs Regression Sta Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.01 0.26 0.45 OM is 0.26 ccluding sa soil OM - a tistics 0.50 0.25 1.19 203 df 1 201 202	2000 States Stat	0.10 2.59 15.85 by corer tec 10% topsoi only MS 97.22754 1.419708	0.92 0.01 0.00 chnique I OM) <i>F</i> 68.4842	-0.25 0.06 0.40 	0.28 0.46 0.51 F <i>F</i> <i>Upper 95%</i> 0.63	-0.25 0.06 0.40	0.28 0.46 0.51

Topsoil OM on subs Regression Stat			,					
Multiple R	0.70							
·	0.70							
R Square	0.49							
Adjusted R Square Standard Error	0.48							
Observations	240							
	240							
ANOVA	16	66	146	-		-		
D	df	SS	MS		gnificance	F		
Regression	1	178.0427	178.0427	225.0962	2.92E-36			
Residual	238	188.2491	0.790963					
Total	239		-					
	Coefficients					Upper 95%o		
Intercept	0.07	0.16	0.42	0.67	-0.25	0.39	-0.25	0.39
Topsoil OM	0.50	0.03	15.00	0.00	0.43	0.56	0.43	0.56
Better r2 and interc		ignficantly	different	to corer				
Slope is greater by o	corer.							
GRASSLAND, Sand s								
Topsoil OM and sub	soil stones	s, effect on	subsoil O	М				
Regression Stat	tistics							
Multiple R	0.59							
R Square	0.34							
Adjusted R Square	0.30							
Standard Error	0.98							
Observations	37							
ANOVA								
-	df	SS	MS	F	qnificance	F		
Regression	2	17.20285	-	8.89314				
Residual	34	32.88472	0.967198	0.05514	0.000705			
Total	36	50.08757	0.507150					
	Coefficients		t Stat	Dyaluo	lower 05%	Upper 95%o	wor 05 0%p	nor 05 0
	0.76	0.34	2.21	0.03		1.45	0.06	1.45
Intercept								
Subsoil stone class	-0.31	0.25 0.08	-1.25 4.22	0.22		0.19	-0.82	0.19
Topsoil OM	0.34			0.00	0.18	0.50	0.18	0.50
Probable negative e	effect of st	ones (0.3%	per stone	class)				
GRASSLAND, Light L								
Topsoil OM and sub		s, effect or	subsoil O	М				
Regression Stat								
Multiple R	0.79							
R Square	0.63							
Adjusted R Square	0.62							
Standard Error	0.88							
Observations	83							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	2	105.7226	52.86131	68.47958	4.66E-18			
Residual	80	61.75425	0.771928					
nesiduai	82	167.4769						
Total		-		Duralua	ower 95%	Upper 95%o	wer 95 09n	ner 95.0
Total	Coefficients	andard Err	t Stat	P-value				
Total C	Coefficients -0.53		t Stat -1.82					
Total	<i>Coefficients</i> -0.53 -0.38	andard Err 0.29 0.15	<i>t Stat</i> -1.82 -2.55	0.07 0.01	-1.10	0.05 -0.08	-1.10 -0.67	0.05 0.06-

Affact of compline -	nothed an	toncoil Of	1%					
Affect of sampling r		topsoli ON	/1%					
Regression Stat								
Multiple R	0.28							
R Square	0.08							
Adjusted R Square	0.06							
Standard Error	4.74							
Observations	50							
ANOVA								
	df	SS	MS		gnificance	F		
Regression	1	90.31697	90.31697	4.018669	0.050658			
Residual	48	1078.769	22.47435					
Total	49	1169.086						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%µ	oper 95.0
Intercept	5.11	1.09	4.69	0.00	2.92	7.29	2.92	7.29
Method	2.77	1.38	2.00	0.05	-0.01	5.55	-0.01	5.55
This difference is ex	kaggerated	because 9	organic sa	amples we	re sample	d by corer v	versus 3 by a	auger
WOODLAND								
Effect of topsoil ON	1% on Subs	oil OM%						
Regression Stat	tistics							
Multiple R	0.59							
R Square	0.35							
Adjusted R Square	0.35							
Standard Error	0.68							
Observations	286							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	72.17992	72.17992	154.0031				
Residual	284	133.1084	0.468691					
		205.2883						
Total	285	205.2883						
			t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	oper 95.0
(Coefficients	andard Err	t Stat 2.18				<i>ower 95.0</i> 9 ہوں 0.03	
C Intercept	Coefficients 0.28	andard Err 0.13	2.18	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM%	Coefficients 0.28 0.46	andard Err 0.13 0.04	2.18 12.41		0.03			
C Intercept	Coefficients 0.28 0.46	andard Err 0.13 0.04	2.18	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46	Coefficients 0.28 0.46 5 x Topsoil	0.13 0.04 0M% +	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a	Coefficients 0.28 0.46 5 x Topsoil nd light lo	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON	Coefficients 0.28 0.46 6 x Topsoil nd light lo 1 on subso	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat	Coefficients 0.28 0.46 5 x Topsoil nd light lo A on subso	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R	Coefficients 0.28 0.46 5 x Topsoil nd light lo 1 on subso tistics 0.90	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square	Coefficients 0.28 0.46 5 x Topsoil nd light lo 1 on subso tistics 0.90 0.81	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square Adjusted R Square	Coefficients 0.28 0.46 5 x Topsoil nd light lo A on subso cistics 0.90 0.81 0.80	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square Adjusted R Square Standard Error	Coefficients 0.28 0.46 5 x Topsoil nd light lo A on subso cistics 0.90 0.81 0.80 1.41	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations	Coefficients 0.28 0.46 5 x Topsoil nd light lo A on subso cistics 0.90 0.81 0.80	andard Err 0.13 0.04 OM% + am subsoil	2.18 12.41 0.28	0.03	0.03	0.54	0.03	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square Adjusted R Square Standard Error	Coefficients 0.28 0.46 5x Topsoil nd light lo A on subso tistics 0.90 0.81 0.80 1.41 25	andard Err 0.13 0.04 OM% + am subsoil il OM	2.18 12.41 0.28 s	0.03 0.00	0.03 0.39	0.54 0.53	0.03	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil ON Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	Coefficients 0.28 0.46 5× Topsoil nd light lo A on subso tistics 0.90 0.81 0.80 1.41 25 df	andard Err 0.13 0.04 OM% + am subsoi il OM SS	2.18 12.41 0.28 s	0.03 0.00	0.03 0.39 gnificance	0.54 0.53	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil OM Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	Coefficients 0.28 0.46 5x Topsoil nd light lo A on subso tistics 0.90 0.81 0.80 1.41 25 df 1	andard Err 0.13 0.04 OM% + am subsoil il OM il OM SS 192.8791	2.18 12.41 0.28 s <i>MS</i> 192.8791	0.03 0.00	0.03 0.39	0.54 0.53	0.03	0.54
C Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil OM Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Regression Residual	Coefficients 0.28 0.46 5 x Topsoil nd light lo A on subso tistics 0.90 0.81 0.80 1.41 25 df 1 23	andard Err 0.13 0.04 OM% + am subsoil il OM 55 192.8791 45.62653	2.18 12.41 0.28 s	0.03 0.00	0.03 0.39 gnificance	0.54 0.53	0.03	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil OM Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.28 0.46 5 × Topsoil nd light lo A on subso istics 0.90 0.81 0.80 1.41 25 df 1 23 24	Andard Err 0.13 0.04 OM% + am subsoil il OM SS 192.8791 45.62653 238.5056	2.18 12.41 0.28 s 192.8791 1.983762	0.03 0.00 <i>F</i> 97.22894	0.03 0.39 <i>gnificance</i> 9.96E-10	0.54 0.53	0.03 0.39	0.54
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil OM Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.28 0.46 5 × Topsoil nd light lo A on subso istics 0.90 0.81 0.80 1.41 25 df 1 23 24 Coefficients	andard Err 0.13 0.04 OM% am subsoil il OM \$192.8791 45.62653 238.5056 andard Err	2.18 12.41 0.28 s 192.8791 1.983762 <i>t Stat</i>	0.03 0.00 F 97.22894 P-value	0.03 0.39 gnificance 9.96E-10 Lower 95%	0.54 0.53 F Upper 95%	0.03 0.39	0.54 0.53
Intercept Topsoil OM% Subsoil OM% = 0.46 WOODLAND Sand a Affect of topsoil OM Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	Coefficients 0.28 0.46 5 × Topsoil nd light lo A on subso istics 0.90 0.81 0.80 1.41 25 df 1 23 24	andard Err 0.13 0.04 OM% am subsoil il OM \$192.8791 45.62653 238.5056 andard Err	2.18 12.41 0.28 s 192.8791 1.983762	0.03 0.00 <i>F</i> 97.22894	0.03 0.39 gnificance 9.96E-10 Lower 95% -0.86	0.54 0.53	0.03 0.39	0.54

Affect of topsoil ON								
Regression Stat								
Multiple R	0.61							
R Square	0.38							
Adjusted R Square	0.35							
Standard Error	0.92							
Observations	25							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	11.6906	11.6906	13.88877	0.001106			
Residual	23	19.3598	0.84173					
Total	24	31.0504						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%ov	ver 95.0% pp	er 95.0
Intercept	1.32	0.37	3.56	0.00	0.56	2.09	0.56	2.09
Topsoil OM	0.21	0.06	3.73	0.00	0.09	0.32	0.09	0.32
			M on subs	oil OM				
WOODLAND Mediu Affect of sampling r			M on subs	oil OM				
Affect of sampling r Regression Stat	method and		M on subs	oil OM				
Affect of sampling r	method and		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R R Square	method and tistics 0.61 0.38		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square	method and tistics 0.61		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R	method and tistics 0.61 0.38		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square	method and tistics 0.61 0.38 0.32		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error	method and tistics 0.61 0.38 0.32 0.94		M on subs	oil OM				
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations	method and tistics 0.61 0.38 0.32 0.94		M on subs		gnificance	F		
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA	nethod and tistics 0.61 0.38 0.32 0.94 25	d topsoil O			gnificance 0.005416	F		
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations	nethod and tistics 0.61 0.38 0.32 0.94 25 df	d topsoil O	MS 5.864585	F	5,5	F		
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression	nethod and tistics 0.61 0.38 0.32 0.94 25 df 2	ss 11.72917	MS 5.864585	F	5,5	F		
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	nethod and tistics 0.61 0.38 0.32 0.94 25 df 2 22 22	55 11.72917 19.32123 31.0504	MS 5.864585 0.878238	F 6.677673	0.005416	F Upper 95%ov	ver 95.0%	per 95.0
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	nethod and 0.61 0.38 0.32 0.94 25 df 22 24	55 11.72917 19.32123 31.0504	MS 5.864585 0.878238	F 6.677673	0.005416		<u>wer 95.09</u> рр 0.46	
Affect of sampling r Regression Stat Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total	distics 0.61 0.38 0.32 0.94 25 df 22 24 Coefficients	SS 11.72917 19.32123 31.0504 andard Err	MS 5.864585 0.878238 t Stat	F 6.677673 P-value	0.005416	Upper 95%ov		per <u>95.0</u> 2.13 0.88

11.11	Relationship o	f Total Nitrogen	and Organic Matter
-------	----------------	------------------	--------------------

			ogoni		gamei			
ARABLE data								
Topsoil Organ		and Topsoil	Nitrogen					
Regression S								
Multiple R	0.81							
R Square	0.66							
Adjusted R Sq	0.66							
Standard Erro	0.04							
Observations	128							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.321943	0.321943	249.2004	1.21E-31			
Residual	126	0.16278	0.001292					
Total	127	0.484723						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	0.039		3.839	0.000			0.019	0.059
Topsoil OM	0.045		15.786	0.000		0.050	0.039	0.050
Total N = OM			20.700	0.000	0.000	0.000	0.000	0.000
	× 0.0+J	. 0.04						
ARABLE data								
Subsoil Organ	ic Mottor c	and Subsail	Total Nitr	0.000				
				ogen				
Regression S								
Multiple R	0.78							
R Square	0.60							
Adjusted R Sq								
Standard Erro	0.03							
Observations	128							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.152219	0.152219	190.008	6.33E-27			
Residual	126	0.100941	0.000801					
Total	127	0.25316						
(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0
Intercept	0.030	0.006	5.039			0.042	0.018	0.042
Subsoil OM	0.041		13.784					
Total N = OM				0.000	0.035	0.047	0.035	0.047
	x 0.041		13.704	0.000	0.035	0.047	0.035	0.047
	x 0.041		13.704	0.000	0.035	0.047	0.035	0.047
LEVS	x 0.041		13.704	0.000	0.035	0.047	0.035	0.047
LEYS Tonsoil Organ		+ 0.03		0.000	0.035	0.047	0.035	0.047
Topsoil Organ	ic Matter a	+ 0.03		0.000	0.035	0.047	0.035	0.047
Topsoil Organ Regression S	ic Matter a Statistics	+ 0.03		0.000	0.035	0.047		0.047
Topsoil Organ Regression S Multiple R	ic Matter a Statistics 0.80	+ 0.03				0.047		0.047
Topsoil Organ Regression S Multiple R R Square	ic Matter a Statistics 0.80 0.63	+ 0.03				0.047		0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq	ic Matter a Statistics 0.80 0.63 0.63	+ 0.03						0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro	ic Matter a Statistics 0.80 0.63 0.63 0.07	+ 0.03						0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations	ic Matter a Statistics 0.80 0.63 0.63	+ 0.03						0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro	ic Matter a Statistics 0.80 0.63 0.63 0.07 132	+ 0.03						0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA	ic Matter a Statistics 0.80 0.63 0.63 0.07	+ 0.03 and Topsoil	MS	F	gnificance			0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations	ic Matter a Statistics 0.80 0.63 0.63 0.07 132	+ 0.03 and Topsoil SS 0.959338	Nitrogen		gnificance			
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA	ic Matter a Statistics 0.80 0.63 0.63 0.07 132 df	+ 0.03 and Topsoil	MS	F	gnificance			0.04/
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression	ic Matter a Statistics 0.80 0.63 0.63 0.07 132 df 1	+ 0.03 and Topsoil SS 0.959338	Nitrogen <i>MS</i> 0.959338	F	gnificance			
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Residual Total	ic Matter a Statistics 0.80 0.63 0.63 0.07 132 df 1 130 131	+ 0.03 and Topsoil SS 0.959338 0.554278	Nitrogen <i>MS</i> 0.959338	F 225.0023	gnificance 3.82E-30	F	0.035	
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Residual Total	ic Matter a Statistics 0.80 0.63 0.63 0.07 132 df 1 130 131	+ 0.03 and Topsoil SS 0.959338 0.554278 1.513616 andard Err	Nitrogen <i>MS</i> 0.959338 0.004264	F 225.0023 P-value	gnificance 3.82E-30 Lower 95%	F		0.047
Topsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Residual Total	ic Matter a Statistics 0.80 0.63 0.63 0.07 132 df 1 130 131 Coefficients	+ 0.03 and Topsoil SS 0.959338 0.554278 1.513616 andard Err 0.014	Nitrogen <i>MS</i> 0.959338 0.004264 <i>t Stat</i>	F 225.0023 P-value 0.001	<i>gnificance</i> 3.82E-30 <i>Lower 95%</i> 0.021	F Upper 95%	ower 95.0%	per 95.0

LEYS								
Subsoil Organ		nd Subsoi	Total Nitr	ogen				
Regression S	tatistics							
Multiple R	0.84							
R Square	0.71							
Adjusted R Sq	0.71							
Standard Erro	0.03							
Observations	132							
ANOVA								
	df	SS	MS	F	gnificance	F		
Regression	1	0.254284	0.254284	315.0861	1.5E-36			
Residual	130	0.104914	0.000807					
Total	131	0.359198						
C	Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	per 95.0%
Intercept	0.039	0.005	8.424	0.000	0.030	0.049	0.030	0.049
Subsoil OM%	0.038	0.002	17.751	0.000	0.034	0.043	0.034	0.043
Total N = OM	x 0.038	+ 0.04						
EXTENSIVE GR	ASSLAND							
Topsoil Organ		nd Topsoi	Nitrogen					
Regression S								
Multiple R	0.93							
R Square	0.95							
Adjusted R Sq	0.86							
Standard Erro	0.04							
Observations	94							
	94							
ANOVA	16	66	140	-		-		
.	df	SS	MS		gnificance	F		
Regression	1		0.945384	556.0185	8.97E-41			
Residual	92		0.0017					
Total	93	1.101809						
(ootticionte	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%p	ner 95.0%
						0.000	0.045	
Intercept	0.007	0.012	0.641	0.523	-0.015	0.030	-0.015	0.030
Topsoil OM	0.007 0.053	0.012 0.002	0.641 23.580	0.523 0.000	-0.015 0.048	0.030 0.057	-0.015 0.048	
	0.007 0.053	0.012 0.002	0.641	0.523 0.000	-0.015 0.048			0.030
Topsoil OM Total N = OM	0.007 0.053 x 0.053	0.012 0.002	0.641 23.580	0.523 0.000	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR	0.007 0.053 x 0.053	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ	0.007 0.053 x 0.053 ASSLAND ic Matter a	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S	0.007 0.053 x 0.053 ASSLAND ic Matter a itatistics	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica	-0.015 0.048			0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94	0.012 0.002 + 0.01	0.641 23.580 (intercept	0.523 0.000 insignfica ogen	-0.015 0.048 nt)	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04	0.012 0.002 + 0.01 and Subsoil	0.641 23.580 (intercept Total Nitr	0.523 0.000 insignfica ogen	-0.015 0.048 nt) gnificance	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 df 1	0.012 0.002 + 0.01 and Subsoil	0.641 23.580 (intercept Total Nitr <i>MS</i> 0.423585	0.523 0.000 insignfica ogen	-0.015 0.048 nt) gnificance	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 df	0.012 0.002 + 0.01 md Subsoil 55 0.423585 0.127393	0.641 23.580 (intercept Total Nitr	0.523 0.000 insignfica ogen	-0.015 0.048 nt) gnificance	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 df 1	0.012 0.002 + 0.01 md Subsoil 0.423585 0.127393	0.641 23.580 (intercept Total Nitr District State 0.423585 0.001385	0.523 0.000 insignfica ogen	-0.015 0.048 nt) gnificance	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Regression Residual Total	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 0.77 0.04 94 0.77 0.94 94	0.012 0.002 + 0.01 md Subsoil 55 0.423585 0.127393	0.641 23.580 (intercept Total Nitr Total Nitr 0.423585 0.001385	0.523 0.000 insignfica ogen <i>F</i> 305.9024	-0.015 0.048 nt) <i>gnificance</i> 5.24E-31	0.057		0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Regression Residual Total	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 0.77 0.04 94 0.77 0.94 94	0.012 0.002 + 0.01 and Subsoil 0.423585 0.423585 0.127393 0.550978	0.641 23.580 (intercept Total Nitr District State 0.423585 0.001385	0.523 0.000 insignfica ogen <i>F</i> 305.9024	-0.015 0.048 nt) g <i>nificance</i> 5.24E-31 Lower 95%	0.057	0.048	0.030
Topsoil OM Total N = OM EXTENSIVE GR Subsoil Organ Regression S Multiple R R Square Adjusted R Sq Standard Erro Observations ANOVA Regression Residual Total C	0.007 0.053 x 0.053 ASSLAND ic Matter a tatistics 0.88 0.77 0.77 0.04 94 0.77 0.04 94 0.77 0.92 93 Coefficients	0.012 0.002 + 0.01 and Subsoil 0.423585 0.127393 0.550978 andard Err	0.641 23.580 (intercept Total Nitr Total Nitr 0.423585 0.001385 t Stat	0.523 0.000 insignfica ogen <i>F</i> 305.9024 <i>P</i> -value	-0.015 0.048 nt) g <i>nificance</i> 5.24E-31 Lower 95% 0.005	0.057 F Upper 95%	0.048	0.030 0.057

c Matter a	nd Topsoil	Nitrogen					
tatistics							
0.91							
0.82							
0.81							
0.08							
34							
df	SS	MS	F	gnificance	F		
1	0.913104	0.913104	145.9666	1.83E-13			
32	0.200178	0.006256					
33	1.113283						
oefficients	andard Err	t Stat	P-value	Lower 95%	Jpper 95%	ower 95.0%	pper 95.0%
0.065	0.024	2.720	0.010	0.016	0.114	0.016	0.114
0.035	0.003	12.082	0.000	0.029	0.041	0.029	0.041
x 0.035	+ 0.06						
c Matter a	nd Subsoil	Total Nitr	ogen				
			ogen				
df	SS	MS	F	anificance	F		
1		-			•		
-			_0/.10/0	1.501 15			
-		0.000302					
		t Stat	P-value	l ower 95%!	Inner 95%	ower 95 09	Inner 95 A
							0.052
0.032	0.003	14.393	0.002		0.032	0.013	0.032
	0.003	17.000	0.000	0.031	0.041	0.051	0.041
	catistics 0.91 0.82 0.81 0.08 34 df 1 32 0.065 0.035 x 0.035 c Matter a catistics 0.93 0.87 0.86 0.03 34 df 1 32 33 oefficients: 0.033	atistics 0.91 0.82 0.81 0.08 34 34 0 34 0.1 0.913104 32 0.200178 33 1.113283 0.065 0.024 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.031 0.93 0.93 0.93 0.93 0.93 0.93 0.34 0.03 34 0.03 34 0.03 34 0.03 34 0.03 33 0.23477 0.93 0.032 0.032 0.032	0.91	tatistics Image: second s	tatistics Image: Constraint of the sector of t	tatistics Image: state of the state	atistics Image: statistics Im